

B.A./B.Sc. (General) Ist Semester (0001) Examination

0043

MATHEMATICS

Paper : I (Plane Geometry)

Time: 3 Hours]

[Maximum Marks:65

Note :- Attempt *five* questions in all, selecting at least two questions from each sections.

Section-A

1. (a) Transform $5^{2}x - 2xy + 5^{2}y - 10y - 7 = 0$ to rectangular axes through (0,1) inclined at an angle

 $\frac{\pi}{4}$ to the original axes.

(b) Show that $x^2 + (a\sqrt{3y}-3)x + (3y^2 - 3\sqrt{3y}-4) = 0$ represents a pair of straight line. Also find distance between mean. 3,3 2. (a) Prove that the joint equation of straight lines bisecting the angles between lines :

$$ax^{2}+ 24xy + by^{2} = 0$$
 is $\frac{x^{2}-y^{2}}{a-b} = \frac{xy}{h}$

(b) Find equation of pair of lines joining the origin to the points of intersection of line y = mx+cwith the curve Prove that they are perpendicular If $2c^2 = a^2(1 + m^2)$

3,3

3,3

- 3. (a) Find the locus of mid-points of the chords of the circle $x^{2} + y^{2} = 16$ which touch the circle $(x - 4)^{2} + (y - 3)^{2} = 36$
 - (b) Find the equation of the circle which passes through the origin and cuts orthogonally each of the circles $x^{2} + y^{2} - 8x + 12 = 0$ and $x^{2} + y^{2} - 4x - 6y - 3 = 0$
- 4. (a) The point (2,1) is a limited point of a coaxial system of circle of which $x^2 + y^2 4y 3 = 0$ is 9 member. Find the equation of the radical axis and the co-ordinates of the other limiting point.

(b) Find the equation of circle which passes through the point (2, 0) and touches the straight line x + 2y - 1 = 0 at the point (3, -3).

3,3

Section-B

5. (a) Prove that the locus of the middle points of the normal chords of the parabola $y^2 = 4$ ax is :

$$\frac{y^2}{2a} + \frac{4a^2}{y^2} = x - 2a$$

- (b) Prove that in a parabola the chords of contract of tangents at the eight angles passes through focus. 3,3
- 6. (a) Show that the minimum angle between a pair of conjugate diameter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

$$\tan^{-1}\left(\begin{array}{c} \frac{2ab}{a^2-b^2} \end{array}\right)$$

- (b) Prove that the locus of the mid-points of the chords
 - of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ which touch the circle

on the joint of the foci of the ellipse as diameter is :

$$\left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\right)^{2} = a^{2} c^{2} \left(\frac{x^{2}}{a^{4}} + \frac{y^{2}}{b^{4}}\right)$$
3,3

7. (a) Prove that the pole of px + my = 1 w.r.t the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ lies on the ellipse $\frac{x^2}{9a^2} + \frac{y^2}{9b^2} = 1$ if $a^2p^2 + b^2m^2 = 9$ (b) If y = x is a diameter of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and eccentricity of the ellipse is $\frac{1}{\sqrt{3}}$, find the equation of the diameter conjugate to it. 3,3

8. (a) Show that the locus of the mid-points of the chords of the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ whose pole

lies on the line x + y - 1 = 0 is the hyperbola :

$$\frac{x^2}{16} - \frac{y^2}{9} = x + y$$

 (b) Find the asymptotes of the hyperbola xy - x - 2y - 5 =
 0. Also find the equation of the conjugate hyperbola
 3,3