B.A./B.Sc. (General) Ist Semester (0001) Examination

0043

MATHEMATICS

Paper:I
(Plane Geometry)

Time: 3 Hours]

[Maximum Marks : 65
Note :- Attempt five questions in all, selecting at least two questions from each sections.

Section-A

1. (a) Transform $5^{2} x-2 x y+5^{2} y-10 y-7=0$ to rectangular axes through $(0,1)$ inclined at an angle $\frac{\pi}{4}$ to the original axes.
(b) Show that $x^{2}+(a \sqrt{3 y}-3) x+\left(3 y^{2}-3 \sqrt{3 y}-4\right)=0$ represents a pair of straight line. Also find distance between mean.
2. (a) Prove that the joint equation of straight lines bisecting the angles between lines:
$a x^{2}+24 x y+b y^{2}=0$ is $\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h}$
(b) Find equation of pair of lines joining the origin to the points of intersection of line $y=m x+c$ with the curve Prove that they are perpendicular If $2 c^{2}=a^{2}\left(1+m^{2}\right)$
3. (a) Find the locus of mid-points of the chords of the circle $x^{2}+y^{2}=16$ which touch the circle $(x-4)^{2}+(y-3)^{2}=36$
(b) Find the equation of the circle which passes through the origin and cuts orthogonally each of the circles $x^{2}+y^{2}-8 x+12=0$ and $x^{2}+y^{2}-4 x-6 y-3=0$
4. (a) The point $(2,1)$ is a limited point of a coaxial system of circle of which $x^{2}+y^{2}-4 y-3=0$ is 9 member. Find the equation of the radical axis and the co-ordinates of the other limiting point.
(b) Find the equation of circle which passes through the point $(2,0)$ and touches the straight line

$$
x+2 y-1=0 \text { at the point }(3,-3)
$$

Section-B

5. (a) Prove that the locus of the middle points of the normal chords of the parabola $y^{2}=4 a x$ is :

$$
\frac{y^{2}}{2 a}+\frac{4 a^{2}}{y^{2}}=x-2 a
$$

(b) Prove that in a parabola the chords of contract of tangents at the eight angles passes through focus. 3,3
6. (a) Show that the minimum angle between a pair of conjugate diameter of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\tan ^{-1}\left(\frac{2 a b}{a^{2}-b^{2}}\right)$
(b) Prove that the locus of the mid-points of the chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ which touch the circle on the joint of the foci of the ellipse as diameter is :

$$
\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{2}=a^{2} c^{2}\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}\right)
$$

7. (a) Prove that the pole of $p x+m y=1$ w.r.t

$$
\begin{aligned}
& \text { the ellipse } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text { lies on the ellipse } \\
& \frac{x^{2}}{9 a^{2}}+\frac{y^{2}}{9 b^{2}}=1 \text { if } a^{2} p^{2}+b^{2} m^{2}=9
\end{aligned}
$$

(b) If $y=x$ is a diameter of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
and eccentricity of the ellipse is $\frac{1}{\sqrt{3}}$, find the equation of the diameter conjugate to it.
8. (a) Show that the locus of the mid-points of the chords of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ whose pole lies on the line $x+y-1=0$ is the hyperbola :

$$
\frac{x^{2}}{16}-\frac{y^{2}}{9}=x+y
$$

(b) Find the asymptotes of the hyperbola $x y-x-2 y-5=$ 0 . Also find the equation of the conjugate hyperbola

