(ii) Questions :8]

\section*{Sub. Code : \\ | 0 | 0 | 4 | 4 |
| :--- | :--- | :--- | :--- |}

Exam. Code:

0	0	0	1

B.A./B.Sc. (General) 1 st Semester

 Examination1127
MATHEMATICS
(Calculus-I)
Paper: II

Time : 3 Hours]

[Max. Marks: 80
Note :- (i) Attempt five questions, selecting at least two questions from each Unit.
(ii) Each question will carry 6 marks.

Unit-I

1. (a) Solve the inequation :

$$
\frac{2}{x-2}<\frac{x+2}{x-2}<2
$$

(b) State and prove Archimedian property. Using the property prove that the set of natural numbers N is not bounded above.
2. (a) Show that $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exists.
(b) Evaluate:

$$
\begin{equation*}
\lim _{x \rightarrow 1 / 2} \frac{1}{x}\left[\frac{1}{x}\right], \text { if exists. } \tag{3,3}
\end{equation*}
$$

3. (a) Use intermediate value theorem to show that equation $\sin x-x+1=0$ has a real root.
(b) Evaluate:

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{x-\sin x}{\tan ^{3} x} \tag{3,3}
\end{equation*}
$$

4. (a) Evaluate :

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right) .
$$

(b) Discuss the Continuity of

$$
f(x)=\left\{\begin{array}{ll}
\frac{|x|+x}{3}, & x \leq 3 \tag{3,3}\\
\frac{2|x-3|}{x-3}, & x \leq 3
\end{array}\right\} \quad \text { over R. }
$$

Unit-II

5. (a) Differentiate $y=x^{\sinh x}+x^{\cosh x}$ w.r.t. x.
(b) Let f be a real valued function defined in [a, b] such that (i) f is continuous in $[a, b]$
(ii) f is differentiable in (a, b) (iii) $f(a)=f(b)$, then there exists at least one $\operatorname{CE}(a, b)$ such that $f^{\prime}(c)=0$,
6. (a) Prove that $\tanh ^{-1} x=\frac{1}{2} \log \left(\frac{x+1}{1-x}\right),-1<x<1$,
and then find its derivative.
(b) Use Cauchy's mean value theorem to evaluate

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{\frac{\cos \pi x}{2}}{\frac{\log 1}{x}} \tag{3,3}
\end{equation*}
$$

7. (a) Use mean value theorem to prove:

$$
\frac{x}{1+x}<\log (1+x)<x \text { for } x>-1, x \neq 0
$$

(b) Use Taylo's theorem ton express the polynomial $2 x^{3}+7 x^{2}+x-6$ in powers of $(x-2)$.
8. (a) State and prove leibnitz's Theorem.
(b) If $y=\frac{\log x}{x}$, prove that

$$
\begin{equation*}
y=\frac{(-1)^{n}[n}{x^{n+1}}\left[\log x-1 \frac{-1}{2} \frac{-1}{3} \ldots \ldots \frac{-1}{n}\right] \tag{3,3}
\end{equation*}
$$

