(ii) Questions :8 Sub. Code :

B.A./B.Sc.(General) 2nd Semester

 1055
MATHEMATICS

Paper -I : Solid Geometry

Time : 3 Hours]

[Max. Marks: 30
Note :- Attempt five questions, selecting at least two questions from each section.

SECTION-I

I. (a) Shift the origin to a suitable point so that the equation

$$
2 x^{2}+3 y^{2}-z^{2}-8 x+2 z+7=0
$$

is be transformed from into an equation in which the first degree terms are present .
(b) Show that the directions equally inclined to three mutually perpendicular directions whose direction cosines are $\left\langle\mathrm{I}_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}\right\rangle,\left\langle\mathrm{I}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}\right\rangle,\left\langle\mathrm{I}_{3}, \mathrm{~m}_{3}, \mathrm{n}_{3}\right\rangle$ are given by

$$
\left\langle\frac{\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}}{\sqrt{3}}, \frac{m+m+m}{\sqrt{3}}, \frac{n_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}}{\sqrt{3}}\right\rangle
$$

II. (a) Find the centre of the two spheres which touch the plane $4 x+3 y=47$ at the point $(8,5,4)$ and the sphere $x^{2}+y^{2}+z^{2}=1$.
(b) Find the equations of the two tangent planes to the sphere $x^{2}+y^{2}+z^{2}=y$, which pass through the line $x+y=6$, $x-2 z=3$.
III. (a) Find the equation of the sphere which touches the plane $3 x+2 y-z+2=0$ at the pointt $P(1,-2,1)$ and also cuts orthogonally the sphere $x^{2}+y^{2}+z^{2}-4 x+z-4 x+6 y+4=0$.
(b) Find the equation of tbe sphere through the point $(0,0,0)$ coaxial with the sphere $x^{2}+y^{2}+z^{2}-4 x+6 y+=0$ and the sphere which has the points ($1,2,-3$) and $(5,0,1)$ as the extremities of a diameter .
IV. (a) Find the equation of the cylinder whose generator are Parallel to the line $\frac{x}{y}=\frac{y-4}{5}=\frac{z+1}{-4}$ and which has for its
Guiding the curve hyperbola $3 x^{2}-4 y^{2}=5, z=2$.
(b) Obtain the equation of the right circular cylinder describe on the circle through the points $(a, 0,0),(0, a, 0)$ and $(0,0, a)$ as the guiding circle .

SECTION-II

V. (a) A variable plane is parallel to the given plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$ and meets the axis in A,B, C .Prove that the circle ABC lies on the cone

$$
y z\left(\frac{b}{c}+\frac{c}{b}\right)+z x \frac{c}{a}+\frac{a}{c}+x y\left(\frac{a}{b}+\frac{b}{a}\right)=0
$$

(b) Find the equation of cone whose vertex is at $(-1,1,2)$ and whose guiding curve is $3 x^{2}-y^{2}=1, z=0$.
6. (a) A right circular cone passes through x-axis, y-axis and line $x=y=z$, show that semi vertical angle of the cone is given by:

$$
\cos ^{-1}\left[(9-4 \sqrt{3})^{-\frac{1}{2}}\right]
$$

(b) If $x=\frac{y}{2}=z$ represents one of the three mutually
perpendiculars generators of the cone $11 y z+6 z x-14 x y=0$, then find the equation of other two .
7. (a) Prove that the angle between the lines given by
$x+y+z=0, a y z+b z x+c x y=0$ is $\frac{\pi}{2}$ if $a+b+c=0$.
(b) Find the locus of points from which three mutually perppendicular tangent lines can be drawn to ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
8. (a) Reduce the equation $x^{2}+4 y^{2}+3 z^{2}+2 x-8 y+9 z-10=0$ into the standard form and identify the quadatic surface represented by it.
(b) Reduce the equation

$$
3 x^{2}-y^{2}-z^{2}+6 y z-6 x+6 y-2 z-2=0
$$

to the standard form and state the nature of surface represented by it .

