http://www.punjabpapers.com

(i) Printed Pages :3]

Roll No.

(ii) Questions :8]

Sub. Code: 0 1 4

Exam. Code:

0 0 0 2

B.A./B.Sc.(General) 2nd Semester 1055 MATHEMATICS Paper -I: Solid Geometry

Time: 3 Hours [Max. Marks: 30

Note :- Attempt **five** questions, selecting at least **two** questions from each section.

SECTION-I

- I. (a) Shift the origin to a suitable point so that the equation $2x^2 + 3y^2 z^2 8x + 2z + 7 = 0$ is be transformed from into an equation in which the first degree terms are present.
 - (b) Show that the directions equally inclined to three mutually perpendicular directions whose direction cosines are $< l_1, m_1, n_1>, < l_2, m_2, n_2>, < l_3, m_3, n_3>$ are given by $\left\langle \frac{l_1+l_2+l_3}{\sqrt{3}}, \frac{m+m+m}{\sqrt{3}}, \frac{n_1+n_2+n_3}{\sqrt{3}} \right\rangle$ 2,4
- II. (a) Find the centre of the two spheres which touch the plane 4x + 3y = 47 at the point (8, 5, 4) and the sphere $x^2 + y^2 + z^2 = 1$.

(b) Find the equations of the two tangent planes to the sphere $x^2 + y^2 + z^2 = y$, which pass through the line x + y = 6, x - 2z = 3.

- III. (a) Find the equation of the sphere which touches the plane 3x + 2y z + 2 = 0 at the pointt P(1, -2, 1) and also cuts orthogonally the sphere $x^2 + y^2 + z^2 4x + z 4x + 6y + 4 = 0$.
 - (b) Find the equation of the sphere through the point (0,0,0) coaxial with the sphere $x^2 + y^2 + z^2 4x + 6y + = 0$ and the sphere which has the points (1,2,-3) and (5,0,1) as the extremities of a diameter . 3,3
- IV. (a) Find the equation of the cylinder whose generator are

Parallel to the line $\frac{x}{y} = \frac{y-4}{5} = \frac{z+1}{-4}$ and which has for its

Guiding the curve hyperbola $3x^2 - 4y^2 = 5$, z = 2.

(b) Obtain the equation of the right circular cylinder describe on the circle through the points (a, 0, 0), (0, a, 0) and (0, 0, a) as the guiding circle . 3,3

SECTION-II

V. (a) A variable plane is parallel to the given plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$

and meets the axis in A,B, C .Prove that the circle ABC lies on the cone

$$yz\left(\frac{b}{c} + \frac{c}{b}\right) + zx \frac{c}{a} + \frac{a}{c} + xy\left(\frac{a}{b} + \frac{b}{a}\right) = 0$$

- (b) Find the equation of cone whose vertex is at (-1, 1, 2) and whose guiding curve is $3x^2 y^2 = 1$, z = 0. 3,3
- 6. (a) A right circular cone passes through x-axis, y-axis and line x = y = z, show that semi vertical angle of the cone is given by:

$$\cos^{-1} \left[(9 - 4\sqrt{3})^{-\frac{1}{2}} \right]$$

(b) If $x = \frac{y}{2} = z$ represents one of the three mutually

perpendiculars generators of the cone 11yz + 6zx - 14xy = 0, then find the equation of other two . 3,3

7. (a) Prove that the angle between the lines given by

$$x + y + z = 0$$
, $ayz + bzx + cxy = 0$ is $\frac{\pi}{2}$ if $a + b + c = 0$.

- (b) Find the locus of points from which three mutually perpendicular tangent lines can be drawn to ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$ 2,4
- 8. (a) Reduce the equation $x^2 + 4y^2 + 3z^2 + 2x 8y + 9z 10 = 0$ into the standard form and identify the quadatic surface represented by it.
 - (b) Reduce the equation $3x^2 y^2 z^2 + 6yz 6x + 6y 2z 2 = 0$ to the standard form and state the nature of surface represented by it .