Exam : B.A./B.Sc.(General), 2nd Semester

Subject : Mathematics

Paper : Paper - III : Theory of Equations

Time : 3 Hours

Maximum Marks : 30
Note : Attempt five questions in all selecting at least two questions from each unit. All questions carry equal marks.

UNIT-I

1. (a) Find a polynomial of least degree having $-2,1,3$ as its zeros and having value -8 at $x=2$.
(b) Find g.c.d of two polynomials $f(x)=x^{3}+6 x^{2}+11 x+6$ and $g(x)=x^{2}+7 x+10$. Express the g.c.d as $a(x) f(x)+b(x) g(x)$.
2. (a) Solve the equation $x^{4}+2 x^{3}-2 x-1=0$ given that it has multiple roots.
(b) Prove that the complex roots of a real polynomial equation occur in conjugate pairs.
3. (a) Solve the equation $x^{4}+2 x^{3}-21 x^{2}-22 x+40=0$ given that its roots are in A.P.
(b) Solve the equation $x^{4}-8 x^{3}+14 x^{2}+8 x-15=0$ given that two of its roots are equal in magnitude but opposite in sign.
4. (a) Translorm the equation $2 x^{3}-9 x^{2}+13 x-6=0$ into one in which second term is missing and hence solve the equation.
(b) If a, β, γ are roots of $2 x^{3}+x^{2}+x+1=0$ form an equation whose roots are

$$
\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}-\frac{1}{a^{2}}, \frac{1}{\gamma^{2}}+\frac{1}{a^{2}}-\frac{1}{\beta^{2}}, \frac{1}{a^{2}}+\frac{1}{\beta^{2}}-\frac{1}{\gamma^{2}}
$$

UNIT-II

5. (a) Find the equation whose roots are squared differences of the roots of the equation $x^{3}+6 x^{2}+9 x+4=0$. Hence show that given equation has a double roots.
(b) Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a n x^{n}$ be a real polynomial of degree n and $a_{0}=0$. Let r and s be the number of variations in sign of $f(x)$ and $f(-x)$ respectively. Show that $n-r-s$ is even.
6. (a) Show that the real roots of the equation $x^{4}-10 x^{3}-13 x^{2}+60 x+65=0$ lie between -4 and 12.
(b) Use Newton's method of divisor to find the integral roots of the equation :
$3 x^{4}-23 x^{3}+35 x^{2}+31 x-30=0$
7. (a) Use Cardon's method to solve
$x^{3}+x^{2}-16 x+20=0$
(b) For the equation $x^{3}-6 x^{2}-6 x-14=0$, find $\mathrm{G}^{2}+4 \mathrm{H}^{3}$ and hence discuss the nature of roots.
8. (a) Solve the biquadratic $x^{4}-6 x^{3}+3 x^{2}+22 x-6=0$ by Descarte's Method.
(b) Solve by Ferrori's Method, the equation $2 x^{4}+6 x^{3}-3 x^{2}+2=0$
