(i) Printed Pages :3]

Roll No.

(ii) Questions :7]

Sub. Code:

0 1 5 0

Exam. Code:

0 0 0 2

4

B.A./B.Sc.(General) 2nd Semester Examination 1047 PHYSICS (Electricity and Magnetism-II) Paper: C

Time: 3 Hours [Max. Marks: 22

- **Note :-** (i) Attempt *five* questions in all by selecting *two* questions from each of Units I and II.
 - (ii) Unit III is compulsory.
 - (iii) Use of non-programmable calculator is allowed.

UNIT-I

 Show that transformation equations of electric field from one frame at rest to other moving frame with constant velocity are given by

 $E_{x'} = E_{x'} E_{y'} = \gamma E_{y}$ and $E_{z'} = \gamma E_{z}$ where $E_{x'}$, $E_{y'}$ and $E_{z'}$ are the components of electric field in moving frame that is moving along X-axis.

- 2. (a) Derive the relation $\mu = h_0(1 + x_m)$; where the symbol have their usual meaning.
 - (b) In a lab system, an electric field

 $\overrightarrow{E} = (2 \hat{i} + 4 \hat{j})$ V/m. Calculate electric field as measured in a frame of reference moving with velocity of $4(3 \hat{i} + 4 \hat{j}) \times 10^7$ m/sec.

2,2

- 3. (a) Derive the differential and integral form of Ampere's law in magnetism.
 - (b) A magnetic field of 1.6×10^3 Tesla produces a flux of 2.4×10^{-5} wb. in a bar of iron of crosssection 0.2 cm^2 . Derive the permeability and susceptibility of specimen.

2,2

UNIT-II

- 4. (a) State Biot and Savart's law and derive the magnetic field due to a straight conductor carrying current.
 - (b) What is the Significance of $\overrightarrow{\nabla}$. $\overrightarrow{B} = 0$ and $\overrightarrow{\nabla} \times \overrightarrow{B} = 0$.

21/2,11/2

- 5. (a) By using Ampere's law, derive the relation for magnetic field due to a toroid.
 - (b) Calculate the mutual inductance between two coils, when a current of 4.0 A changes to 8.0A in 0.5 sec. and induces an e.m.f. of 50 mV in the secondary coil.

2,2

6. State and prove reciprocity theorem in mutual induction.

4

UNIT-III

- 7. Attempt any six
 - (i) What are Ohmic and non-Ohmic conductors?
 - (ii) Differentiate between microscopic and macroscopic currents.
 - (iii) Why ferromagnetism is not found in liquids and gases?
 - (iv) Why an ordinary iron piece does not behave as a magnet?
 - (v) State the Gauss's law in magnetism.
 - (vi) Is the source of magnetic field is analogous to the source of electric field?
 - (vii) State the condition under which the equation $\overrightarrow{\Delta} \times \overrightarrow{B} = \mu_0 \overrightarrow{J}$ is valid.

1x6 = 6