(ii) Questions :7

B.A/B.Sc.(General) 4th Semester
 1046
 PHYSICS

Paper :A Statistical Physics and Thermodynamic-II Time Allowed: Three Hours]
Note :- (I) Attempt five questions in all,selecting two each from unit I and unit II unit III is compulsory.
(2) All questions carry marks as indicated.
(3) Non -Programmable Calculators are allowed.
(4) Logarithmic Tables can be asked.

UNIT-I

I. (a) Find the relation for the entropy of one mole ofan Ideal gas 2
(b) Find the change in entropy of one mole of carbon dioxide, When its absolute temperature is increased by 3 times and process of-heating is :
(i) Isochoric
(ii) Isobaric
II. (a) Define and find expression for thermo EMF and peiltier coefficient and Thomson Coefficient
(b) The entropy of $v=3.0$ moles of an ideal gas Increases by $\Delta S=23 \mathrm{JK}^{-1}$ due to isothermal expansion. How many timed should the volume of the gas be increased or decreased? 2
III. (a) How does Heat pump differ from Refrigerator '? Prove that the amount of mechanical energy required to extract a given amount of heat from a cold body increases with decrease in temperature of the body, for a given temperature of sink.
(b) A heat engine employing a Carnot cycle with an efficiency of $\eta=20 \%$ is used as a refrigerating machine, the thermal reservoir being the same. Find its refrigerating efficiency. 2

UNIT-II

IV. (a) Derive Clapeyron's equation from Maxwell's relations and explain the change of ice to water on the basis of it.
(b) Making use of MaxWell's thermodynamical relation prove) that cooling is produced when the substance Which contracts on heating is compressed.
V. (a) What are thermodynamic potentials? What is their significances Deduce the relation $[\partial \mathrm{T} / \partial \mathrm{V}]_{\mathrm{s}}=$ radiate $[\partial \mathrm{P} / \partial \mathrm{S}]_{\mathrm{V}}$
(b) Derive thermodynamically an expression for Joule Thomson CO-efficient. Show that for a perfect gas Joule thomson effect vanishes.
VI. (a)Find an expression for the change in temperature of wire stretched adiabatically.
(b)Prove that the speCific heat at constant volume for aVander Waal gas is equal to the specific heat at constant volume for a perfect gas.

UNIT-III(Compuslory)

VII. Attempt any six parts:
(1)How will the entropy change during the free expansion of a gas?
(2)Find the change in the energy of System if 300 j work is done on it, while 63 calories of heat flows out of it
(3)Write the ClausiuS-Clapewron equation. What is its significance?
(4)Correct representation of first law of thermodynamics is $(\partial Q=d U+\partial W)$ and not ($d Q=d U+d W)$ why?
(5)How does free electron gas differ from ordinary gas?
(6)Why Seebeck effect is not an independent effect ?
(7)Two Stars radiate maximum energy at wavelength $3.0 \times 10^{-5} \mathrm{~cm}$ and $5.0 \times 10^{-7} \mathrm{~m}$ respectively. what is the ratio of the temperature?

