[Total No. of (i) Printed Pages 4
Sub Code : 0541(1048)
(ii) Questions 8]

Exam Code : 0006

Exam : B.A./B.Sc. (General), 6th Semester

Subject : Mathematics
Paper : Paper-I : Analysis-II
Time : 3 Hours
Maximum Marks : 30

Note : Attempt five questions in all selecting two questions from each section. All questions carry equal marks.

1. (a) $\iint_{\Lambda} x d x d y$, where A is the region bounded by the parabolas circles:

$$
y^{2}=4 a x \text { and } x^{2}=4 a y .
$$

(b) $\iint \sqrt{a^{2}-x^{2}-y^{2}} d x d y$ over the region bounded
by the semi circle $x^{2}+y^{2}=a x$ lying in the first quadrant.
2. (a) Find the volume of the tetrahedron bounded by the planes: -

$$
x=0, y=0, z=0 \text { and } \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

(b) $\iiint \frac{\mathrm{dx} \mathrm{dy} \mathrm{dz}}{\sqrt{1-\mathrm{x}^{2}-\mathrm{y}^{2}-\mathrm{z}^{2}}}$ over the positive octant of the sphere $x^{2}+y^{2}+z^{2}=1$
3. (a) If $\overrightarrow{\mathrm{F}}=y \hat{i}+(x-2 x z) \hat{\jmath}-x y \hat{k}$, then evaluate
$\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} \mathrm{dS}$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the $X Y$ plane.
(b) If $\vec{F}=\left(2 x^{2}+y^{2}\right) \hat{i}+(3 y-4 x) \hat{J}$, evaluate
$\int \vec{F} . d r$ around the triangle c
$A B C$ whose vertices are $A(0,0), B(2,0)$ and $C(2,1)$.
4. (a) Apply Green's theorem in plane to evaluate
$\oint_{c}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$, where C is the
boundary of the surface enclosed by the x axis and the semi circle $y=\sqrt{1-x^{2}}$.
(b) Verify Stokes Theorem for $\vec{F}-(2 x-y) \hat{i}-y z^{2} \hat{\jmath}-y^{2} z \hat{K} \quad$ where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
5. (a) Show that the Sequence $\left\{f_{n}(x)\right\}$ defind by $f_{n}(x)=n x e^{-n x^{2}}$, converges point wise but not uniformly in $[0, \infty]$
(b) Use M_{n} - Test to show that the sequence $\left\{f_{n}(x)\right\}$, where $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$ does not converge uniformly on $[0,1]$.
6. (a) Show that the series
$\frac{2 x}{1+x^{2}}+\frac{4 x^{3}}{1+x^{4}}+\frac{8 x^{7}}{1+x^{8}}+$
converges uniformly for $-1<x<1$.
(b) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n^{4} x^{2}}$
is uniformly convergent for all x and it can she differentiated term by term.
7. (a) Find the radii of convergence of the following power series :
(i) $\sum\left(1+\frac{1}{n}\right)^{n^{2}} x^{n}$
(i) $\sum_{n} \frac{(x-2)^{n}}{44^{n}}$
(b) Show that $\int_{0}^{1} \frac{\tan ^{-1} x}{x} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)^{2}}$
8. (a) Expand $f(x)=|\cos x|$ as Fourier series in $-\pi<x<\pi$.
(b) Show that for $-\pi \leq x \leq \pi$.

$$
x=\frac{\pi^{2}}{3}-4\left(\frac{\cos x}{1^{2}}-\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}-\right.
$$

Hence evaluate $\sum_{n=0}^{\infty} \frac{1}{n^{2}}$

