\qquad

Section-A

Q1. Fill in the blanks
(i) \qquad is used for quickly locating contour gradient.
(ii) Contour interval is given by \qquad
(iii) Repetition is the method of observing
\qquad angles accurately.
(iv) For a \qquad traverse method of interior angles is preferred.
(v) A traverse is said to be close if it returns to the \qquad
(vi) Vermier A and Vermier B of a theodolite are placed at a difference of \qquad
(vii) \qquad is a transit theodolite.
(viii) $\frac{L^{2}}{24 R}$ is \qquad of a curve.
(ix) \qquad is also known as vertical stave.
(x) If the angle of intersection is α° then deflection angle is \qquad
(xi) \qquad uses circular spirit level.
(xii) If the scale of the map is $1: 5000$, then no. of KM represented by 1 cm will be \qquad
(xiii) A closed contour line with one or more higher one inside it represents a \qquad -
(xiv) For hilly areas for a scale of $1 \mathrm{~cm}=100 \mathrm{~m}$, the contour interval will be \qquad to
(xv) If gradient of road is 1.5 in 30 , then 1 m vertical interval will be attained in \qquad metre.

Section-B

Q2. Attempt any 10 questions $10 \times 3=30$
(i) Define contour gradient.
(ii) For what purpose pentagraph is used?
(iii) What is the function of Abney level?
(iv) What is total station?
(v) What do you understand by GPS?
(vi) What is the function of a componsator?
(vii) What is the function of auto level?
(viii) What do you mean by remote sensing?
(ix) What are the applications of GIS technology?
(x) What are the uses of GPS?
(xi) Where vertical curve is provided?
(xii) Define degree of a curve according to chord definition?
(xiii) What you will do if you want to avoid over turning of vehicle on the road?
(xiv) How curves are classified?
(xv) How will you interpolate contour by estimation?

Section-C

Q3. Attempt any three questions
$3 \times 10=30$
(i) The stadia readings with horizontal sight on a vertical staff held 50 m from a tachometer were 1.285 m and 1.780 m . The focal length of the object glass was 250 mm . The distance between the object glass and the vertical axis of the tachometer was 0.15 m . Calculate the stadia interval.
(ii) Co-ordinates of two points A and B are given below. A third point C has been chosen in such a way that bearings of AC and CB are $29^{\circ} 30^{\prime}$ and $45^{\circ} 45^{\prime}$ respectively. Calculate the length of the lines. AC and CB

Point	Northing	Easting
A	150	200
B	1500	1300

(iii) A circular curve has a 200 m radius and 65° deflection angle, what is its degree by
(a) Arc definition
(b) Chord definition

Assume 30m chord length
(iv) (a) What ia a transition curve? Why it is powdered and what are its requirements?
(b) Discuss the characteristics of contours
(v) Write short notes on any two
(a) EDM
(b) GIS and GPS
(c) Traversing of contours
(d) Centrifugal force and super elevation.

ESTIMATING AND COSTING IN ELECTRICAL ENGINEERING $4^{\text {th }}$ Exam/Elect/2152/5268/Dec'11

Duration 3 Hrs
75 Marks:

Section A

Q1. Fill in the blanks
a. The cables are pulled out through conduits with the help of \qquad wire.
b. Estimating helps us to arrange for \qquad , \qquad and \qquad before starting and project work.
c. The frequency at the consumer terminals should not vary by more than \qquad percent of the declared frequency.
d. The sudden expenses are called \qquad .
e. A short circuit current is taken as \qquad times the normal currents for calculation of size of wire.
f. A starter is not requird for a \qquad H.P. motor.
g. The large motors should be provided with \qquad earthing.
h. For service lines \qquad proof cable should be used.
i. The armouring is done on U.G. cables for \qquad projeciton.
j. The shackle insulators are fastened with pole with the help of a \qquad
k. The fuse provides projeciton against \qquad fault.

1. For meauring insulation resistance, all switches are mode ON and all the lamps are \qquad .
m . The distribution transformer is wound in \qquad .
n. The service line join the service pole with the \qquad of the consumer.
o. The light and power circuits used for connecitons should be kept \qquad .

Section B

Note: Attempt any six questions
Q2 i. Discuss the procedure of calculating labour charges, while designing an electrical estimating.
ii. Make a speciman tender notice to be published in news paper.
iii. Discuss the factors to be considered to determine the size of the conductor.
iv. Give reasons, why the load in a consumer's installation is to be devided into various sub circuits and estimate the number of sub circuits is to be designed in domestic installation for a load of 9 KW ?
v. Draw the layout of an indoor type sub station.
vi. Draw the connection diagram of a device to be used for the protection against earth leakage and give its brief operation?
vii. Discuss, how will you control the earth resistance at desired low value.
viii. Compare the conduit and batten wiring.
ix. Discuss, how the orders for supply of items can be placed.

Section C

Note: Attempt any three questions
Q3. Draw the neat sketch of pole mounted sub station and prepare a list of material.
Q4. Explain the varius accessories used in domestic installaiton with neat sketches.
Q5. Draw and explain the pipe earthing?
Q6. Draw the neat sketch of giving service connections to a school having load of 30kw (lights and fans). Assume the distance of the school is to be 30 metre from the pole? Enlist the material required.
Q7. Estimate the material required to design a $33 \mathrm{kv}, 3$ phase overhead line supplying 20 megawatts, 0.8 legging for 1 km length.
M.Marks : 75

Note: (a) All questions are compulsory.
(b) Figures to the right indicate the marks allotted to the questions.
(c) Use of non-programmable calculator is permissible.

SECTION - A

Q. 1 Attempt the following :

$(15 \times 1=15)$
(i) The \qquad is a sequence of numbers listing the various angles, in degrees and the size of nose radius.
(ii) The \qquad of a single point cutting tool indicates that the plane which forms the face or top of a tool has been ground back at an angle sloping from the nose.
(iii) The \qquad of a single point cutting tool is the included angle when the tool has been ground wedge shaped.
(iv) The largest diameter of work that will revolve without touching the bed and is twice the height of the centre measured from the bed of the lathe is the \qquad _.
(v) The \qquad mechanism in lathe makes the carriage to engage or disengage with the lead screw.
(vi) A \qquad in lathe is used to provide support to a long slender workpiece.
(vii) Operation of smoothing and squaring the surface around a hole for the seat of a nut or the head of a screw on drilling machine is called \qquad _.
(viii) An \qquad reamer is so made that it may be adjusted by very small amount to compensate for wear, or to accommodate some variation in hole size.
(ix) The \qquad machine is the most accurate of among all boring machine tools.
(x) The \qquad slide of the tool head of shaper has a swivel base which is held on a circular seat on the ram.
(xi) In \qquad the cutting pressure acts along the length of the tool.
(xii) A \qquad is a device which holds and locates a workpiece and guides and controls one or more cutting tools.
(xiii) A \qquad is a device which holds and locates a workpiece during an inspection or for a manufacturing operation.
(xiv) The \qquad arrangement incorporated in a jig to enable operations to be performed on the periphery of work at different angular positions.
(xv) A \qquad must be short with fewer teeth with less material removal per pass.

SECTION - B

Q. 2 Attempt any three of the following :

$(3 \times 5=15)$
(a) How do you define cutting speed and feed? State various factors that are considered to fix cutting speed and feed.
(b) Why chucks are used ? List various types of chucks used in lathes and describe any one chuck with neat sketch.
(c) List different taper turning methods and explain with neat sketch any one of them.
(d) Describe in brief the different operations that can be performed on a horizontal boring machine.

Q. 3 Attempt any three of the following :

$(3 \times 5=15)$
(a) In a shaper work, the length of stroke is 300 mm , number of double strokes per minute is 40 and the ratio of return time to cutting time is $1: 2$. Find the cutting speed.
(b) Describe various slotting tools and slotter operations.
(c) What operational factors must be considered to ensure efficient clamping of workpieces on jigs and fixtures?
(d) Explain common methods of lubrication in machine tools.

SECTION - C

Q. 4 Attempt any three of the following :

$(3 \times 10=30)$
(a) Explain in brief the various types of tools used on lathe and for what purpose.
(b) Describe with neat sketch the Whitworth quick return mechanism and explain its working on the machine as used in workshop.
(c) Draw a neat sketch of broach and explain the different elements of a broach. How it is used in workshop.
(d) Describe in brief the various types of clamping devices used in jigs and fixtures.
(e) Explain with neat sketch the working principle of a slotting machine.

DATA STRUCTURE USING ' \mathbf{C} '
$4^{\text {th }}$ Exam/Comp/6260/2362/Dec'11

Duration 3 Hrs.
75 Marks:

Section A

Q1. Do as directed:
a. The data structure whose elements are processed sequentially are called \qquad data structures.
b. \qquad is the example of non - linear data structure.
c. A linked list that may traverse in both directions is called \qquad .
d. FIFO stands for \qquad .
e. Insertion operaiton in stack is known as POP (T/F)
f. In \qquad notation, the operators exist after its operands.
g. Binary search is \qquad than linear search.
\qquad refers to the process of Writing each node in a tree.
i. When a function calls itsself, it is known as \qquad .
j. Bubble sort is faster than quick sort (T/F)

Section B

Note: Attempt any five questions
Q2 i. What do you mean by a data strucutre? Explain its types with suitable examples.
ii. Write an algorithm to insert an element at the ith position in anarray.
iii. How linked list is represented in memory? Explain.
iv. Write a program in C to find the factorial of a number using recursion.
v. Write an algorithm to insert an element in a queue.
vi. Write the preorder and postorder traversal of the following binary tree.

Section C
Note: Attempt any two questions
Q3. Explain the algorithms for travesing a binary tree in pre order and post order.
Q4. Explain insertion sort algorithm with the help of a suitable example.
Q5. Write short notes on
a. Pointer variables
b. Doubly linked lists
\qquad

NETWORKS FILTERS AND TRANSMISSION LINES

$4^{\text {th }}$ Exam/ECE/2261/6166/Dec'11
Duration 3 Hrs.
75 Marks:

Section A

Q1. Fill in the blanks when the load is perfectly matched.
a. The standing wave ratio is equal \qquad
b. A transmission line is distortionless if $\mathrm{L} / \mathrm{C}=$?/?
c. Insertion loss in decibles is \qquad .
d. Butterworth filter has \qquad reponse.
e. Phase constant in HPF is given by \qquad .
f. Attenuation is the term that is exactly reverse of \qquad .
g. The point of voltage maxima and voltage minima are separated by a distance of \qquad .
h. A \qquad element shows linear characteristic of voltage Vs current.
i. Attenuators have applications in \qquad \& \qquad circuit.

Section B

Note: Attempt any five questions
Q2 i. What is insertion loss in a two port network? On what factors does it depend?
ii. Define characteristic impedance of symmetrical network. Explain briefly what is propagation constant, attenuation constant and phase shift constant.
iii. What are attenutators? Derive a relation between different units of attenuation.
iv. Write a short note on active filter.
v. Explain the pirnciple of impedance matching using single stub.
vi. What are different types of transmission lines? Give atleast one application of each type.
vii. What is loading of lines? What is the function of loading of lines?

Section C

Note: Attempt any three questions
Q3. Derive the expression for characteristic impedance using π type network circuit for transmission line.
Q4. Explain the concept and working of m-derived low pass and high pass filters.
Q5. Design symmetrical T-attenuator and π attenuator if attenuation is 20 db and characteristic resistance $\left(\mathrm{R}_{\mathrm{o}}\right)$ is equal to 400Ω.
Q6. What are standing waves and when do they occur? Derive an expression for the reflection coefficient and voltage standing wave ratio.
Q7. What are different types of distortions in transmission lines? How can the distortions be removed?

