\qquad

1. Dimensions of impulse are
a. $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
b. $\left[\mathrm{MT}^{-2}\right]$
c. $\left[\mathrm{MLT}^{-1}\right]$
d. $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-3}\right]$
2. Which of the following has the smallest value?
a. fermi
b. millimeter
c. angstrom
d. micron
3. The radius of a sphere is 5 cm . Its volume will be given by
a. $523.33 \mathrm{~cm}^{3}$
b. $5.0 \times 10^{2} \mathrm{~cm}^{3}$
c. $5.23 \times 10^{2} \mathrm{~cm}^{3}$
d. $5 \times 10^{2} \mathrm{~cm}^{3}$
4. The error in the measurement of radius of sphere is 0.3%. What is percentage error in measurement of its volume?
a. 0.3%
b. 0.9%
c. 0.6%
d. $4 / 3 \pi(0.3)^{3}$
5. An experiment measures quantities a, b, c and X is calculated from the formula $X=\mathrm{ab}^{2} / \mathrm{c}^{3}$
The percentage errors in a, b, c are $\pm 1 \%, \pm 3 \%$ and $\pm 2 \%$ respectively. The percentage error in x can be
a. $\pm 13 \%$
b. $\pm 4 \%$
c. $\pm 7 \%$
d. $\pm 1 \%$
6. If $f=x^{2}$, then the relative error in f is
a. $\Delta \mathrm{x} / \mathrm{x}$
b. $(\Delta x)^{2 / x}$
c. $(\Delta \mathrm{x})^{2}$
d. $2 \Delta \mathrm{x} / \mathrm{x}$
7. The density of the material of a cube is measured by measuring its mass and lengths of its sides. if the maximum errors in the measurement of mass and the length are 3% and 2% respectively, the maximum error in the measurement of density is
a. 1%
b. 9%
c. 5%
d. 7%
8. The significant figures in 0.009 is
a. 1
b. 3
c. 2
d. 4
9. The velocity ' v ' of a particle is given in terms of time ' t ' as $v=a t+\frac{b}{b+c}$
The dimensions of a, b, c are
a. $\quad\left[\mathrm{L}^{2}\right][\mathrm{T}]\left[\mathrm{LT}^{-2}\right]$
b. $\left[\mathrm{LT}^{-2}\right][\mathrm{L}][\mathrm{T}]$
c. $\quad\left[\mathrm{LT}^{-2}\right][\mathrm{LT}][\mathrm{L}]$
d. $[\mathrm{L}][\mathrm{LT}]\left[\mathrm{T}^{2}\right]$
10. The dimensions of quantities in one or more pairs of the following are same. Identify the pair
a. torque and force
b. angular momentum and work
c. energy and Young's modulus
d. light year and wave length
11. Checking the correctness of equation using the method of dimensions is based on
a. equality of inertial frames of reference
b. the types of system of units
c. principle of homogeneity of dimensions
d. none of these
12. $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$ represents
a. force
b. pressure
c. work
d. Planck's constant
13. Which of the following quantities is a scalar?
a. mass
b. velocity
c. momentum
d. diplacement
14. The minimum number of vectors of unequal magnitude required to produce zero resultant is
a. 2
b. 3
c. 4
d. more than 4
15. Two vectors \vec{A} and \vec{B} obey the relation $\vec{A}+\vec{B}=\vec{A}-\vec{B}$ and θ is angle between them, then
a. $\theta=120^{\circ}$
b. $\vec{B}=0$
c. $\theta=90^{\circ}$
d. $\overrightarrow{\mathrm{A}}=0$
16. Two vectors \vec{A} and \vec{B} are $\vec{A}=2 \hat{i}+5 k$ and $\vec{B}=3 \hat{j}+4 k \hat{k}$ their scalar product is
a. 20
b. $5 \sqrt{33}$
c. 23
d. 26
17. The condition of vectors \vec{A} and \vec{B} to be perpendicular is
a. $\quad \vec{A} \cdot \vec{B}=1$
b. $\vec{A} \times \vec{B}=0$
c. $\vec{A} \cdot \vec{B}=0$
d. $\vec{A} \times \vec{B}=1$
18. Given $\vec{A}=5 \hat{i}+7 \hat{j}-3 k^{\wedge}$ and $\vec{B}=2 \hat{i}+2 \hat{j}-m \hat{k}$. If \vec{A} and \vec{B} are perpendicular vectors, then value of m is
a. -2
b. -7
c. 8
d. -8
19. A vehicle is moving with a uniform speed ' v ' on a curved road of width ' b ' and radius of curvature ' R '. For providing the centripetal force to the vehicle, the angle of elevation required between the outer and inner edges of the road is
a. $\tan \theta=\frac{v^{2}}{R g}$
b. $\tan \theta=\frac{v}{\mathrm{Rg}^{2}}$
c. $\tan \theta=\frac{v}{R g}$
d. $\tan \theta=\frac{v}{R^{2} g}$
20. Two cars of masses M_{1} and M_{2} are revolving with same speed on circular paths of radii r_{1} and r_{2} respectively. The ratio of their centripetal accelerations will be
a. $\frac{r_{1}}{r_{2}}$
b. $\frac{r_{2}}{r_{1}}$
c.

d.

21. Newton's second law of motion connects
a. momentum and acceleration
b. change of momentum and velocity
c. rate of change of momentum and external force
d. rate of change of force and momentum
22. A particle is moving with a constant speed along a straight-line path. A force is not required to
a. increase its speed
b. decrease its momentum
c. change its direction
d. keep it moving with the same speed
23. Action and reaction forces do not balance each other because they
a. act on the same body
b. do not act on the same body
c. are in opposite directions
d. are not equal
24. An athlete runs some distance before taking a long jump so that he may
a. acquire large inertia of motion
b. overcome inertia of rest
c. get inertia of direction
d. acquired Kinetic energy
25. A machine gun fires a bullet of mass 40 gm with velocity $1200 \mathrm{~ms}^{-1}$. The person holding it can apply a maximum force of 144 Newton on the gun. The maximum number of bullets that can be fired per second in
a. 3
b. 4
c. 5
d. 7
26. A force of 5 N acts on a body of weight 9.8 N . What is the acceleration produced in $\mathrm{M} / \mathrm{s}^{2}$.
a. 49.0
b. 1.96
c. 5.0
d. 0.51
27. The limiting friction between two bodies in contact independent of
a. nature of surfaces in contact
b. the area of surfaces in contact
c. normal reaction between the surfaces
d. all of the above
28. The Kinetic friction is always
a. less than rolling friction
b. equal to rolling friction
c. greater than rolling friction
d. may be less than, greater or equal to rolling friction
29. A force of 98 N is required to pull a body of mass 100 Kg over ice. The coefficient of friction is
a. 0.1
b. 0.8
c. 0.98
d. cannot be determined
30. The energy stored in a watch spring is
a. Kinetic energy
b. potential energy
c. heat energy
d. chemical energy
31. A motor boat is travelling with a speed of $30 \mathrm{~ms}^{-1}$. If the force on it due to water flow is 500 N , the power of the boat is
a. 150 KW
b. 1.5 KW
c. 15 KW
d. 150 W
32. Nms^{-1} is the unit of
a. impulse
b. power
c. energy
d. work
33. When the force retards the motion of a body the work done is
a. zero
b. negative
c. positive
d. +ve or -ve depending upon situation
34. If the momentum of a body is doubled, the Kinetic energy is
a. halved b. unchanged
c. doubled
d. increased four time
35. A body falling from a height of 10 m rebounds from the floor. If it loses 2% of energy in the impact, how high will it rebound?
a. 10 m
b. 8 m
c. 12 m
d. none of the above
36. A uniform force of 4 N acts on a body of mass 8 Kg for a distance of 2.0 m . The K.E. required by the body is
a. 8 J
b. 64 J
c. 4 J
d. 16 J
37. A force \vec{F} acting on a body moving in a circle of radius r is always perpendicular to the instantaneous velocity \vec{v}. The work done by the force on the body in one complete revolution is
a. Fv
b. Fr
c. F. $2 \pi \mathrm{r}$
d. 0
38. Watt day is the unit of
a. power
b. energy
c. force
d. none
39. A hollow sphere and a solid sphere of same mass and radius are allowed to roll down an inclined plane from same height simultan-eously. Which will read the bottom first
a. hollow sphere
b. solid sphere
c. both together
d. none of the above
40. Mass in linear motion has its analog in rotational motion
a. moment of inertia
b. angular momentum
c. torque d. weight
41. Weight of force is called
a. torque b. weight
c. moment of inertia
d. angular momentum
42. Moment of inertia is independent of
a. mass of the body
b. shape of the body
c. location of axis of rotation
d. torque on the body
43. If earth shrinks suddenly to half of its present radius without change in mass, the duration of the day will be
a. 24 hours
b. 6 hours
c 96 hours
d. 12 hours
44. A boy suddenly comes and sits on a circular rotating table. What will remain conserved?
a. linear momentum
b. Kinetic energy
c. angular momentum
d. none of these
45. When the spring is loaded, the strain produced is
a. longitudinal
b. volumetric
c. shearing
d. none
46. The property of metals which allows them to be drawn into thin wires beyond their elastic limit without rupture is called
a. ductibility
b. elasticity
c. malleability
d. hardness
47. In steel the Young's modulus and the strain at the breaking point are $2 \times 10^{11} \mathrm{Nm}^{-2}$ and 0.15 respectively. The stress at the breaking point for steels is therefore
a. $\quad 1.33 \times 10^{11} \mathrm{NM}^{-2}$
b. $7.5 \times 10^{-3} \mathrm{Nm}^{-2}$
c. $1.33 \times 10^{12} \mathrm{Nm}^{-2}$
d. $3 \times 10^{10} \mathrm{Nm}^{-2}$
48. If the temperature of a liquid is raised, then its surface tension is
a. decreased
b. increased
c. irregular
d. equal to viscosity
49. Due to capillary action a liquid will fall in a tube, if the angles of contact is
a. acute
b. obtuse
c. 90°
d. zero
50. The CGS unit of coefficient of viscosity is
a. poise
b. newton
c. $K g-m^{-1} \mathrm{~s}^{-1}$
d. $\mathrm{gs} / \mathrm{cm}^{-1}$
51. The clouds float in atmosphere because of
a. their low temperature
b. their low viscosity
c. their low density
d. creation of low pressure
52. Unit of modulus of elasticity is
a. dyne/cm
b. dyne/cm ${ }^{2}$
c. dyne-cm
d. dynes
53. The menisas of mercury in a capillary tube is
a. convex
b. concave
c. plane
d. uncertain
54. Hooke's law essentially defines
a. stress
b. strain
c. field point
d. elastic limit
55. Which one of the following quantities does not have the unit of force per unit area
a. stress
b. strain
c. Young's modulus of elasticity
d. pressure
56. Water is flowing through a tube of non-uniform cross-section. If the ratio of the radius of the tube at the entrance and exit is $3: 2$ then the ratio of velocity of liquid entering and leaving the tube is
a. 8:27
b. $4: 9$
c. $1: 1$
d. $9: 4$
57. Soap helps in better cleaning of clothes because
a. it reduces the surface tension of solution
b. it gives strength of solution
c. it absorbs the dirt
d. chemical of soaps change
58. The temperature of a gas is a measure of
a. the average Kinetic energy of gaseous molecules
b. the average potential energy of gaseous modulus
c. the average distance between the molecules of the gas
d. the size of the molecules of the gas
59. The temperature of a patient is $40^{\circ} \mathrm{C}$, his temperature of Fahrenheit scale will be
a. $104^{\circ} \mathrm{F}$
b. $72^{\circ} \mathrm{F}$
c. $96^{\circ} \mathrm{F}$
d. $100^{\circ} \mathrm{F}$
60. When water is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ its volume
a. increases
b. decreases
c. remains unchanged
d. first decreases and then increases
61. Mercury thermometers can be used to measure temperature upto
a. $100^{\circ} \mathrm{C}$
b. $212^{\circ} \mathrm{C}$
c. $500^{\circ} \mathrm{C}$
d. $360^{\circ} \mathrm{C}$
62. If a bimetallic strip is heated it will
a. twist itself into a helix
b. not bend at all
c. bend towards the metal with lower thermal expansion coefficient
d. bend towards the metal with higher thermal expansion coefficient
63. The process by which sun's rays reach the earth is
a. radiation
b. conduction
c. convection
d. diffusion
64. The velocity of heat radiation in vacuum is
a. equal to that of light
b. less than that of light
c. greater than that of light
d. equal to that of sound
65. By increasing the temperature of a liquid is
a. volume and density decrease
b. volume and density increase
c. volume increases and density decreases
d. volume decreases and density increases
66. In Searle's method for finding conductivity of metals, the temperature gradient along the bar
a. is greater near the hot end
b. is greater near the cold end
c. is same at all points along the bar
d. increases as we go from hot end to cold end
67. The thermometer suitable to measure $2000^{\circ} \mathrm{C}$ is
a. gas thermometer
b. mercury thermometer
c. vapour-pressure thermometer
d. total radiation pyrometer
68. A piece of ice at $0^{\circ} \mathrm{C}$ is put into a vessel containing water at $0^{\circ} \mathrm{C}$. The ice will
a. melt
b. slightly melt
c. not melt
d. vanish in no time
69. Two bodies are said to be in thermal equilibrium if they have the same
a. temperature
b. amounts of heat
c. specific heat
d. thermal capacities
70. The transmission by conduction is most prominent in
a. liquids
b. solids
c. gases
d. liquids and gases
71. A person of mass 60 kg climbs up 20 m long staircase to the top of a building 10 m high. If $\mathrm{g}=10 \mathrm{~ms}^{-2}$ what is the work done by him?
a. 3 KJ
b. 6 KJ
c. 12 KJ
d. 24 KJ
72. A body measures 8 N in air and 5 N in water. The buoyant force is
a. 3 N
b. 13 N
c. 8 N
d. 5 N
73. A body floats in a liquid contained in a beaker. The whole system is falling under gravity, the upthrust on the body due to liquid is
a. zero
b. equal to weight of body in air
c. equal to weight of liquid displaced
d. equal to weight of impressed part of the body
74. The minimum resultant of two forces 4 N and 3 N is
a. 7 N
b. 4 N
c. 3 N
d. 1 N

75 If $\vec{F}=8 \vec{i}-2 \vec{j}$ and $\vec{r}=6 \hat{i}+8 \hat{k}$ then $\vec{F} . \vec{r}$ will be
a. 6 units
b. 8 units
c. 32 units
d. 48 units
\qquad

APPLIED PHYSICS

1stExam/Common/5403/0351/Dec'11

Duration : $21 / 2$ Hrs.

1. Newton's second law of motion connects
a. momentum and acceleration
b. change of momentum and velocity
c. rate of change of momentum and external force
d. rate of change of force and momentum
2. A particle is moving with a constant speed along a straight-line path. A force is not required to
a. increase its speed
b. decrease its momentum
c. change its direction
d. keep it moving with the same speed
3. Action and reaction forces do not balance each other because they
a. act on the same body
b. do not act on the same body
c. are in opposite directions
d. are not equal
4. An athlete runs some distance before taking a long jump so that he may
a. acquire large inertia of motion
b. overcome inertia of rest
c. get inertia of direction
d. acquired Kinetic energy
5. A machine gun fires a bullet of mass 40 gm with velocity $1200 \mathrm{~ms}^{-1}$. The person holding it can apply a maximum force of 144 Newton on the gun. The maximum number of bullets that can be fired per second in
a. 3
b. 4
c. 5
d. 7
6. A force of 5 N acts on a body of weight 9.8 N . What is the acceleration produced in $\mathrm{M} / \mathrm{s}^{2}$.
a. 49.0
b. 1.96
c. 5.0
d. 0.51
7. The limiting friction between two bodies in contact independent of
a. nature of surfaces in contact
b. the area of surfaces in contact
c. normal reaction between the surfaces
d. all of the above
8. The Kinetic friction is always
a. less than rolling friction
b. equal to rolling friction
c. greater than rolling friction
d. may be less than, greater or equal to rolling friction
9. A force of 98 N is required to pull a body of mass 100 Kg over ice. The coefficient of friction is
a. 0.1
b. 0.8
c. 0.98
d. cannot be determined
10. The energy stored in a watch spring is
a. Kinetic energy
b. potential energy
c. heat energy
d. chemical energy
11. A motor boat is travelling with a speed of $30 \mathrm{~ms}^{-1}$. If the force on it due to water flow is 500 N , the power of the boat is
a. 150 KW
b. 1.5 KW
c. 15 KW
d. 150 W
12. Nms^{-1} is the unit of
a. impulse
b. power
c. energy
d. work
13. When the force retards the motion of a body the work done is
a. zero
b. negative
c. positive
d. +ve or -ve depending upon situation
14. If the momentum of a body is doubled, the Kinetic energy is
a. halved
b. unchanged
c. doubled
d. increased four time
15. A body falling from a height of 10 m rebounds from the floor. If it loses 2% of energy in the impact, how high will it rebound?
a. 10 m
b. 8 m
c. 12 m
d. none of the above
16. A uniform force of 4 N acts on a body of mass 8 Kg for a distance of 2.0 m . The K.E. required by the body is
a. 8 J
b. 64 J
c. 4 J
d. 16 J
17. A force \vec{F} acting on a body moving in a circle of radius r is always
perpendicular to the instantaneous velocity \vec{v}. The work done by the force on the body in one complete revolution is
a. Fv
b. Fr
c. F. $2 \pi \mathrm{r}$
d. 0
18. Watt day is the unit of
a. power
b. energy
c. force
d. none
19. A hollow sphere and a solid sphere of same mass and radius are allowed to roll down an inclined plane from same height simultan-eously. Which will read the bottom first
a. hollow sphere
b. solid sphere
c. both together
d. none of the above
20. Mass in linear motion has its analog in rotational motion
a. moment of inertia
b. angular momentum
c. torque
d. weight
21. Weight of force is called
a. torque
b. weight
c. moment of inertia
d. angular momentum
22. Moment of inertia is independent of
a. mass of the body
b. shape of the body
c. location of axis of rotation
d. torque on the body
23. If earth shrinks suddenly to half of its present radius without change in mass, the duration of the day will be
a. 24 hours
b. 6 hours
c 96 hours
d. 12 hours
24. A boy suddenly comes and sits on a circular rotating table. What will remain conserved?
a. linear momentum
b. Kinetic energy
c. angular momentum
d. none of these
25. When the spring is loaded, the strain produced is
a. longitudinal
b. volumetric
c. shearing
d. none
26. The property of metals which allows them to be drawn into thin wires beyond their elastic limit without rupture is called
a. ductibility
b. elasticity
c. malleability
d. hardness
27. In steel the Young's modulus and the strain at the breaking point are $2 \times 10^{11} \mathrm{Nm}^{-2}$ and 0.15 respectively. The stress at the breaking point for steels is therefore
a. $1.33 \times 10^{11} \mathrm{NM}^{-2}$
b. $7.5 \times 10^{-3} \mathrm{Nm}^{-2}$
c. $1.33 \times 10^{12} \mathrm{Nm}^{-2}$
d. $3 \times 10^{10} \mathrm{Nm}^{-2}$
28. If the temperature of a liquid is raised, then its surface tension is
a. decreased
b. increased
c. irregular
d. equal to viscosity
29. Due to capillary action a liquid will fall in a tube, if the angles of contact is
a. acute
b. obtuse
c. 90°
d. zero
30. The CGS unit of coefficient of viscosity is
a. poise
b. newton
c. $\mathrm{Kg}-\mathrm{m}^{-1} \mathrm{~s}^{-1}$
d. $\mathrm{gs} / \mathrm{cm}^{-1}$
31. The clouds float in atmosphere because of
a. their low temperature
b. their low viscosity
c. their low density
d. creation of low pressure
32. Unit of modulus of elasticity is
a. dyne/cm
b. dyne/cm ${ }^{2}$
c. dyne-cm
d. dynes
33. The menisas of mercury in a capillary tube is
a. convex
b. concave
c. plane
d. uncertain
34. Hooke's law essentially defines
a. stress
b. strain
c. field point
d. elastic limit
35. Which one of the following quantities does not have the unit of force per unit area
a. stress
b. strain
c. Young's modulus of elasticity
d. pressure
36. Water is flowing through a tube of non-uniform cross-section. If the ratio of the radius of the tube at the entrance and exit is $3: 2$ then the ratio of velocity of liquid entering and leaving the tube is
a. 8:27
b. $4: 9$
c. $1: 1$
d. $9: 4$
37. Soap helps in better cleaning of clothes because
a. it reduces the surface tension of solution
b. it gives strength of solution
c. it absorbs the dirt
d. chemical of soaps change
38. The temperature of a gas is a measure of
a. the average Kinetic energy of gaseous molecules
b. the average potential energy of gaseous modulus
c. the average distance between the molecules of the gas
d. the size of the molecules of the gas
39. The temperature of a patient is $40^{\circ} \mathrm{C}$, his temperature of Fahrenheit scale will be
a. $104^{\circ} \mathrm{F}$
b. $72^{\circ} \mathrm{F}$
c. $96^{\circ} \mathrm{F}$
d. $100^{\circ} \mathrm{F}$
40. When water is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ its volume
a. increases
b. decreases
c. remains unchanged
d. first decreases and then increases
41. Mercury thermometers can be used to measure temperature upto
a. $100^{\circ} \mathrm{C}$
b. $212^{\circ} \mathrm{C}$
c. $500^{\circ} \mathrm{C}$
d. $360^{\circ} \mathrm{C}$
42. If a bimetallic strip is heated it will
a. twist itself into a helix
b. not bend at all
c. bend towards the metal with lower thermal expansion coefficient
d. bend towards the metal with higher thermal expansion coefficient
43. The process by which sun's rays reach the earth is
a. radiation
b. conduction
c. convection
d. diffusion
44. The velocity of heat radiation in vacuum is
a. equal to that of light
b. less than that of light
c. greater than that of light
d. equal to that of sound
45. By increasing the temperature of a liquid is
a. volume and density decrease
b. volume and density increase
c. volume increases and density decreases
d. volume decreases and density increases
46. In Searle's method for finding conductivity of metals, the temperature gradient along the bar
a. is greater near the hot end
b. is greater near the cold end
c. is same at all points along the bar
d. increases as we go from hot end to cold end
47. The thermometer suitable to measure $2000^{\circ} \mathrm{C}$ is
a. gas thermometer
b. mercury thermometer
c. vapour-pressure thermometer
d. total radiation pyrometer
48. A piece of ice at $0^{\circ} \mathrm{C}$ is put into a vessel containing water at $0^{\circ} \mathrm{C}$. The ice will
a. melt
b. slightly melt
c. not melt
d. vanish in no time
49. Two bodies are said to be in thermal equilibrium if they have the same
a. temperature
b. amounts of heat
c. specific heat
d. thermal capacities
50. The transmission by conduction is most prominent in
a. liquids
b. solids
c. gases
d. liquids and gases
51. A person of mass 60 kg climbs up 20 m long staircase to the top of a building 10 m high. If $\mathrm{g}=10 \mathrm{~ms}^{-2}$ what is the work done by him?
a. 3 KJ
b. 6 KJ
c. 12 KJ
d. 24 KJ
52. A body measures 8 N in air and 5 N in water. The buoyant force is
a. 3 N
b. 13 N
c. 8 N
d. 5 N
53. A body floats in a liquid contained in a beaker. The whole system is falling under gravity, the upthrust on the body due to liquid is
a. zero
b. equal to weight of body in air
c. equal to weight of liquid displaced
d. equal to weight of impressed part of the body
54. The minimum resultant of two forces 4 N and 3 N is
a. 7 N
b. 4 N
c. 3 N
d. 1 N

55 If $\vec{F}=8 \vec{i}-2 \vec{j}$ and $\vec{r}=6 \hat{i}+8 \hat{k}$ then $\vec{F} . \vec{r}$ will be
a. 6 units
b. 8 units
c. 32 units
d. 48 units
56. Dimensions of impulse are
a. $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
b. $\left[\mathrm{MT}^{-2}\right]$
c. $\left[\mathrm{MLT}^{-1}\right]$
d. $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-3}\right]$
57. Which of the following has the smallest value?
a. fermi
b. millimeter
c. angstrom
d. micron
58. The radius of a sphere is 5 cm . Its volume will be given by
a. $523.33 \mathrm{~cm}^{3}$
b. $5.0 \times 10^{2} \mathrm{~cm}^{3}$
c. $5.23 \times 10^{2} \mathrm{~cm}^{3}$
d. $5 \times 10^{2} \mathrm{~cm}^{3}$
59. The error in the measurement of radius of sphere is 0.3%. What is percentage error in measurement of its volume?
a. 0.3%
b. 0.9%
c. 0.6%
d. $4 / 3 \pi(0.3)^{3}$
60. An experiment measures quantities a, b, c and X is calculated from the formula $X=\mathrm{ab}^{2} / \mathrm{c}^{3}$
The percentage errors in a, b, c are $\pm 1 \%, \pm 3 \%$ and $\pm 2 \%$ respectively. The percentage error in x can be
a. $\pm 13 \%$
b. $\pm 4 \%$
c. $\pm 7 \%$
d. $\pm 1 \%$
61. If $\mathrm{f}=\mathrm{x}^{2}$, then the relative error in f is
a. $\Delta \mathrm{x} / \mathrm{x}$
b. $(\Delta x)^{2 / x}$
c. $(\Delta x)^{2}$
d. $2 \Delta \mathrm{x} / \mathrm{x}$
62. The density of the material of a cube is measured by measuring its mass and lengths of its sides. if the maximum errors in the measurement of mass and the length are 3% and 2% respectively, the maximum error in the measurement of density is
a. 1%
b. 9%
c. 5%
d. 7%
63. The significant figures in 0.009 is
a. 1
b. 3
c. 2
d. 4
64. The velocity ' v ' of a particle is given in terms of time ' t ' as $v=a t+\frac{b}{b+c}$
The dimensions of a, b, c are
a. $\quad\left[L^{2}\right][T]\left[\mathrm{LT}^{-2}\right]$
b. $\left[\mathrm{LT}^{-2}\right][\mathrm{L}][\mathrm{T}]$
c. $\left[\mathrm{LT}^{-2}\right][\mathrm{LT}][\mathrm{L}]$
d. $[\mathrm{L}][\mathrm{LT}]\left[\mathrm{T}^{2}\right]$
65. The dimensions of quantities in one or more pairs of the following are same. Identify the pair
a. torque and force
b. angular momentum and work
c. energy and Young's modulus
d. light year and wave length
66. Checking the correctness of equation using the method of dimensions is based on
a. equality of inertial frames of reference
b. the types of system of units
c. principle of homogeneity of dimensions
d. none of these
67. $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$ represents
a. force
b. pressure
c. work
d. Planck's constant
68. Which of the following quantities is a scalar?
a. mass
b. velocity
c. momentum
d. diplacement
69. The minimum number of vectors of unequal magnitude required to produce zero resultant is
a. 2
b. 3
c. 4
d. more than 4
70. Two vectors \vec{A} and \vec{B} obey the relation $\vec{A}+\vec{B}=\vec{A}-\vec{B}$ and θ is angle between them, then
a. $\theta=120^{\circ}$
b. $\vec{B}=0$
c. $\theta=90^{\circ}$
d. $\vec{A}=0$
71. Two vectors \vec{A} and \vec{B} are $\vec{A}=2 \hat{i}+5 k^{\wedge}$ and $\vec{B}=3 \hat{j}+4 k^{\wedge}$ their scalar product is
a. 20
b. $5 \sqrt{33}$
c. 23
d. 26
72. The condition of vectors \vec{A} and \vec{B} to be perpendicular is
a. $\vec{A} \cdot \vec{B}=1$
b. $\vec{A} \times \vec{B}=0$
c. $\vec{A} \cdot \vec{B}=0$
d. $\vec{A} \times \vec{B}=1$
73. Given $\vec{A}=5 \hat{i}+7 \hat{j}-3 k^{\wedge}$ and $\vec{B}=2 \hat{i}+2 \hat{j}-m \hat{k}$. If \vec{A} and \vec{B} are perpendicular vectors, then value of m is
a. -2
b. -7
c. 8
d. -8
74. A vehicle is moving with a uniform speed ' v ' on a curved road of width ' b ' and radius of curvature ' R '. For providing the centripetal force to the vehicle, the angle of elevation required between the outer and inner edges of the road is
a. $\tan \theta=\frac{v^{2}}{R g}$
b. $\tan \theta=\frac{v}{\mathrm{Rg}^{2}}$
c. $\tan \theta=\frac{v}{\mathrm{Rg}}$
d. $\tan \theta=\frac{v}{R^{2} g}$
75. Two cars of masses M_{1} and M_{2} are revolving with same speed on circular paths of radii r_{1} and r_{2} respectively. The ratio of their centripetal accelerations will be
a. $\frac{r_{1}}{r_{2}}$
b. $\frac{r_{2}}{r_{1}}$
c. ${\underset{n}{2}}_{1 / 2}^{1 / 2}$
d. ${ }_{r a}^{2}$
\qquad

APPLIED PHYSICS

1stExam/Common/5403/0351/Dec'11

Duration: $21 / 2$ Hrs.
M. Marks: 75

1. Weight of force is called
a. torque
b. weight
c. moment of inertia
d. angular momentum
2. Moment of inertia is independent of
a. mass of the body
b. shape of the body
c. location of axis of rotation
d. torque on the body
3. If earth shrinks suddenly to half of its present radius without change in mass, the duration of the day will be
a. 24 hours
b. 6 hours
c 96 hours
d. 12 hours
4. A boy suddenly comes and sits on a circular rotating table. What will remain conserved?
a. linear momentum
b. Kinetic energy
c. angular momentum
d. none of these
5. When the spring is loaded, the strain produced is
a. longitudinal
b. volumetric
c. shearing
d. none
6. The property of metals which allows them to be drawn into thin wires beyond their elastic limit without rupture is called
a. ductibility
b. elasticity
c. malleability
d. hardness
7. In steel the Young's modulus and the strain at the breaking point are $2 \times 10^{11} \mathrm{Nm}^{-2}$ and 0.15 respectively. The stress at the breaking point for steels is therefore
a. $\quad 1.33 \times 10^{11} \mathrm{NM}^{-2}$
b. $7.5 \times 10^{-3} \mathrm{Nm}^{-2}$
c. $1.33 \times 10^{12} \mathrm{Nm}^{-2}$
d. $3 \times 10^{10} \mathrm{Nm}^{-2}$
8. If the temperature of a liquid is raised, then its surface tension is
a. decreased
b. increased
c. irregular
d. equal to viscosity
9. Due to capillary action a liquid will fall in a tube, if the angles of contact is
a. acute
b. obtuse
c. 90°
d. zero
10. The CGS unit of coefficient of viscosity is
a. poise
b. newton
c. $\mathrm{Kg}-\mathrm{m}^{-1} \mathrm{~s}^{-1}$
d. $\mathrm{gs} / \mathrm{cm}^{-1}$
11. The clouds float in atmosphere because of
a. their low temperature
b. their low viscosity
c. their low density
d. creation of low pressure
12. Unit of modulus of elasticity is
a. dyne/cm
b. dyne/cm ${ }^{2}$
c. dyne-cm
d. dynes
13. The menisas of mercury in a capillary tube is
a. convex
b. concave
c. plane
d. uncertain
14. Hooke's law essentially defines
a. stress
b. strain
c. field point
d. elastic limit
15. Which one of the following quantities does not have the unit of force per unit area
a. stress
b. strain
c. Young's modulus of elasticity
d. pressure
16. Water is flowing through a tube of non-uniform cross-section. If the ratio of the radius of the tube at the entrance and exit is $3: 2$ then the ratio of velocity of liquid entering and leaving the tube is
a. $8: 27$
b. $4: 9$
c. $1: 1$
d. $9: 4$
17. Soap helps in better cleaning of clothes because
a. it reduces the surface tension of solution
b. it gives strength of solution
c. it absorbs the dirt
d. chemical of soaps change
18. The temperature of a gas is a measure of
a. the average Kinetic energy of gaseous molecules
b. the average potential energy of gaseous modulus
c. the average distance between the molecules of the gas
d. the size of the molecules of the gas
19. The temperature of a patient is $40^{\circ} \mathrm{C}$, his temperature of Fahrenheit scale will be
a. $104^{\circ} \mathrm{F}$
b. $72^{\circ} \mathrm{F}$
c. $96^{\circ} \mathrm{F}$
d. $100^{\circ} \mathrm{F}$
20. When water is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ its volume
a. increases
b. decreases
c. remains unchanged
d. first decreases and then increases
21. Mercury thermometers can be used to measure temperature upto
a. $100^{\circ} \mathrm{C}$
b. $212^{\circ} \mathrm{C}$
c. $500^{\circ} \mathrm{C}$
d. $360^{\circ} \mathrm{C}$
22. If a bimetallic strip is heated it will
a. twist itself into a helix
b. not bend at all
c. bend towards the metal with lower thermal expansion coefficient
d. bend towards the metal with higher thermal expansion coefficient
23. The process by which sun's rays reach the earth is
a. radiation
b. conduction
c. convection
d. diffusion
24. The velocity of heat radiation in vacuum is
a. equal to that of light
b. less than that of light
c. greater than that of light
d. equal to that of sound
25. By increasing the temperature of a liquid is
a. volume and density decrease
b. volume and density increase
c. volume increases and density decreases
d. volume decreases and density increases
26. In Searle's method for finding conductivity of metals, the temperature gradient along the bar
a. is greater near the hot end
b. is greater near the cold end
c. is same at all points along the bar
d. increases as we go from hot end to cold end
27. The thermometer suitable to measure $2000^{\circ} \mathrm{C}$ is
a. gas thermometer
b. mercury thermometer
c. vapour-pressure thermometer
d. total radiation pyrometer
28. A piece of ice at $0^{\circ} \mathrm{C}$ is put into a vessel containing water at $0^{\circ} \mathrm{C}$. The ice will
a. melt
b. slightly melt
c. not melt
d. vanish in notime
29. Two bodies are said to be in thermal equilibrium if they have the same
a. temperature
b. amounts of heat
c. specific heat
d. thermal capacities
30. The transmission by conduction is most prominent in
a. liquids
b. solids
c. gases
d. liquids and gases
31. A person of mass 60 kg climbs up 20 m long staircase to the top of a building 10 m high. If $\mathrm{g}=10 \mathrm{~ms}^{-2}$ what is the work done by him?
a. 3 KJ
b. 6 KJ
c. 12 KJ
d. 24 KJ
32. A body measures 8 N in air and 5 N in water. The buoyant force is
a. 3 N
b. 13 N
c. 8 N
d. 5 N
33. A body floats in a liquid contained in a beaker. The whole system is falling under gravity, the upthrust on the body due to liquid is
a. zero
b. equal to weight of body in air
c. equal to weight of liquid displaced
d. equal to weight of impressed part of the body
34. The minimum resultant of two forces 4 N and 3 N is
a. 7 N
b. 4 N
c. 3 N
d. 1 N

35 If $\vec{F}=8 \vec{i}-2 \vec{j}$ and $\vec{r}=6 \hat{i}+8 k^{\wedge}$ then $\vec{F} . \vec{r}$ will be
a. 6 units
b. 8 units
c. 32 units
d. 48 units
36. Dimensions of impulse are
a. $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
b. $\left[\mathrm{MT}^{-2}\right]$
c. $\left[\mathrm{MLT}^{-1}\right]$
d. $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-3}\right]$
37. Which of the following has the smallest value?
a. fermi
b. millimeter
c. angstrom
d. micron
38. The radius of a sphere is 5 cm . Its volume will be given by
a. $523.33 \mathrm{~cm}^{3}$
b. $5.0 \times 10^{2} \mathrm{~cm}^{3}$
c. $5.23 \times 10^{2} \mathrm{~cm}^{3}$
d. $5 \times 10^{2} \mathrm{~cm}^{3}$
39. The error in the measurement of radius of sphere is 0.3%. What is percentage error in measurement of its volume?
a. 0.3%
b. 0.9%
c. 0.6%
d. $4 / 3 \pi(0.3)^{3}$
40. An experiment measures quantities a, b, c and X is calculated from the formula $X=a b^{2} / c^{3}$
The percentage errors in $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are $\pm 1 \%, \pm 3 \%$ and $\pm 2 \%$ respectively. The percentage error in x can be
a. $\pm 13 \%$
b. $\pm 4 \%$
c. $\pm 7 \%$
d. $\pm 1 \%$
41. If $\mathrm{f}=\mathrm{x}^{2}$, then the relative error in f is
a. $\Delta x / x$
b. $(\Delta x)^{2} / x$
c. $(\Delta x)^{2}$
d. $2 \Delta x / x$
42. The density of the material of a cube is measured by measuring its mass and lengths of its sides. if the maximum errors in the measurement of mass and the length are 3% and 2% respectively, the maximum error in the measurement of density is
a. 1%
b. 9%
c. 5%
d. 7%
43. The significant figures in 0.009 is
a. 1
b. 3
c. 2
d. 4
44. The velocity ' v ' of a particle is given in terms of time ' t ' as $v=a t+\frac{b}{b+c}$
The dimensions of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are
a. $\quad\left[\mathrm{L}^{2}\right][\mathrm{T}]\left[\mathrm{LT}^{-2}\right]$
b. $\left[\mathrm{LT}^{-2}\right][\mathrm{L}][\mathrm{T}]$
c. $\left[\mathrm{LT}^{-2}\right][\mathrm{LT}][\mathrm{L}]$
d. $[\mathrm{L}][\mathrm{LT}]\left[\mathrm{T}^{2}\right]$
45. The dimensions of quantities in one or more pairs of the following are same. Identify the pair
a. torque and force
b. angular momentum and work
c. energy and Young's modulus
d. light year and wave length
46. Checking the correctness of equation using the method of dimensions is based on
a. equality of inertial frames of reference
b. the types of system of units
c. principle of homogeneity of dimensions
d. none of these
47. $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$ represents
a. force
b. pressure
c. work
d. Planck's constant
48. Which of the following quantities is a scalar?
a. mass
b. velocity
c. momentum
d. diplacement
49. The minimum number of vectors of unequal magnitude required to produce zero resultant is
a. 2
b. 3
c. 4
d. more than 4
50. Two vectors \vec{A} and \vec{B} obey the relation $\vec{A}+\vec{B}=\vec{A}-\vec{B}$ and θ is angle between them, then
a. $\theta=120^{\circ}$
b. $\vec{B}=0$
c. $\theta=90^{\circ}$
d. $\vec{A}=0$
51. Two vectors \vec{A} and \vec{B} are $\vec{A}=2 \hat{i}+5 k^{\wedge}$ and $\vec{B}=3 \hat{j}+4 k^{\wedge}$ their scalar product is
a. 20
b. $5 \sqrt{33}$
c. 23
d. 26
52. The condition of vectors \vec{A} and \vec{B} to be perpendicular is
a. $\quad \vec{A} \cdot \vec{B}=1$
b. $\vec{A} \times \vec{B}=0$
c. $\vec{A} \cdot \vec{B}=0$
d. $\vec{A} \times \vec{B}=1$
53. Given $\vec{A}=5 \hat{i}+7 \hat{j}-3 k^{\wedge}$ and $\vec{B}=2 \hat{i}+2 \hat{j}-m \hat{k}$. If \vec{A} and \vec{B} are perpendicular vectors, then value of m is
a. -2
b. -7
c. 8
d. -8
54. A vehicle is moving with a uniform speed ' v ' on a curved road of width 'b' and radius of curvature ' R '. For providing the centripetal force to the vehicle, the angle of elevation required between the outer and inner edges of the road is
a. $\tan \theta=\frac{v^{2}}{R g}$
b. $\tan \theta=\frac{\mathrm{v}}{\mathrm{Rg}^{2}}$
c. $\tan \theta=\frac{v}{R g}$
d. $\tan \theta=\frac{U}{R^{2} g}$
55. Two cars of masses M_{1} and M_{2} are revolving with same speed on circular paths of radii r_{1} and r_{2} respectively. The ratio of their centripetal accelerations will be
a. $\frac{r_{1}}{r_{2}}$
b. $\frac{r_{2}}{r_{1}}$
c.

d.

56. Newton's second law of motion connects
a. momentum and acceleration
b. change of momentum and velocity
c. rate of change of momentum and external force
d. rate of change of force and momentum
57. A particle is moving with a constant speed along a straight-line path. A force is not required to
a. increase its speed
b. decrease its momentum
c. change its direction
d. keep it moving with the same speed
58. Action and reaction forces do not balance each other because they
a. act on the same body
b. do not act on the same body
c. are in opposite directions
d. are not equal
59. An athlete runs some distance before taking a long jump so that he may
a. acquire large inertia of motion
b. overcome inertia of rest
c. get inertia of direction
d. acquired Kinetic energy
60. A machine gun fires a bullet of mass 40 gm with velocity $1200 \mathrm{~ms}^{-1}$. The person holding it can apply a maximum force of 144 Newton on the gun. The maximum number of bullets that can be fired per second in
a. 3
b. 4
c. 5
d. 7
61. A force of 5 N acts on a body of weight 9.8 N . What is the acceleration produced in $\mathrm{M} / \mathrm{s}^{2}$.
a. 49.0
b. 1.96
c. 5.0
d. 0.51
62. The limiting friction between two bodies in contact independent of
a. nature of surfaces in contact
b. the area of surfaces in contact
c. normal reaction between the surfaces
d. all of the above
63. The Kinetic friction is always
a. less than rolling friction
b. equal to rolling friction
c. greater than rolling friction
d. may be less than, greater or equal to rolling friction
64. A force of 98 N is required to pull a body of mass 100 Kg over ice. The coefficient of friction is
a. 0.1
b. 0.8
c. 0.98
d. cannot be determined
65. The energy stored in a watch spring is
a. Kinetic energy
b. potential energy
c. heat energy
d. chemical energy
66. A motor boat is travelling with a speed of $30 \mathrm{~ms}^{-1}$. If the force on it due to water flow is 500 N , the power of the boat is
a. 150 KW
b. 1.5 KW
c. 15 KW
d. 150 W
67. Nms^{-1} is the unit of
a. impulse
b. power
c. energy
d. work
68. When the force retards the motion of a body the work done is
a. zero
b. negative
c. positive
d. +ve or -ve depending upon situation
69. If the momentum of a body is doubled, the Kinetic energy is
a. halved
b. unchanged
c. doubled
d. increased four time
70. A body falling from a height of 10 m rebounds from the floor. If it loses 2% of energy in the impact, how high will it rebound?
a. 10 m
b. 8 m
c. 12 m
d. none of the above
71. A uniform force of 4 N acts on a body of mass 8 Kg for a distance of 2.0 m . The K.E. required by the body is
a. 8J
b. 64 J
c. 4 J
d. 16 J
72. A force \vec{F} acting on a body moving in a circle of radius r is always perpendicular to the instantaneous velocity \vec{v}. The work done by the force on the body in one complete revolution is
a. Fv
b. Fr
c. $\mathrm{F} .2 \pi \mathrm{r}$
d. 0
73. Watt day is the unit of
a. power
b. energy
c. force
d. none
74. A hollow sphere and a solid sphere of same mass and radius are allowed to roll down an inclined plane from same height simultan-eously. Which will read the bottom first
a. hollow sphere
b. solid sphere
c. both together
d. none of the above
75. Mass in linear motion has its analog in rotational motion
a. moment of inertia
b. angular momentum
c. torque
d. weight
\qquad
APPLIED PHYSICS
1stExam/Common/5403/0351/Dec'11

1. Mercury thermometers can be used to measure temperature upto
a. $100^{\circ} \mathrm{C}$
b. $212^{\circ} \mathrm{C}$
c. $500^{\circ} \mathrm{C}$
d. $360^{\circ} \mathrm{C}$
2. If a bimetallic strip is heated it will
a. twist itself into a helix
b. not bend at all
c. bend towards the metal with lower thermal expansion coefficient
d. bend towards the metal with higher thermal expansion coefficient
3. The process by which sun's rays reach the earth is
a. radiation
b. conduction
c. convection
d. diffusion
4. The velocity of heat radiation in vacuum is
a. equal to that of light
b. less than that of light
c. greater than that of light
d. equal to that of sound
5. By increasing the temperature of a liquid is
a. volume and density decrease
b. volume and density increase
c. volume increases and density decreases
d. volume decreases and density increases
6. In Searle's method for finding conductivity of metals, the temperature gradient along the bar
a. is greater near the hot end
b. is greater near the cold end
c. is same at all points along the bar
d. increases as we go from hot end to cold end
7. The thermometer suitable to measure $2000^{\circ} \mathrm{C}$ is
a. gas thermometer
b. mercury thermometer
c. vapour-pressure thermometer
d. total radiation pyrometer
8. A piece of ice at $0^{\circ} \mathrm{C}$ is put into a vessel containing water at $0^{\circ} \mathrm{C}$. The
ice will
a. melt
b. slightly melt
c. not melt
d. vanish in no time
9. Two bodies are said to be in thermal equilibrium if they have the same
a. temperature
b. amounts of heat
c. specific heat
d. thermal capacities
10. The transmission by conduction is most prominent in
a. liquids
b. solids
c. gases
d. liquids and gases
11. A person of mass 60 kg climbs up 20 m long staircase to the top of a building 10 m high. If $\mathrm{g}=10 \mathrm{~ms}^{-2}$ what is the work done by him?
a. 3 KJ
b. 6 KJ
c. 12 KJ
d. 24 KJ
12. A body measures 8 N in air and 5 N in water. The buoyant force is
a. 3 N
b. 13 N
c. 8 N
d. 5 N
13. A body floats in a liquid contained in a beaker. The whole system is falling under gravity, the upthrust on the body due to liquid is
a. zero
b. equal to weight of body in air
c. equal to weight of liquid displaced
d. equal to weight of impressed part of the body
14. The minimum resultant of two forces 4 N and 3 N is
a. 7 N
b. 4 N
c. 3 N
d. 1 N

15 If $\vec{F}=8 \vec{i}-2 \vec{j}$ and $\vec{r}=6 \hat{i}+8 \hat{k}$ then $\vec{F} . \vec{r}$ will be
a. 6 units
b. 8 units
c. 32 units
d. 48 units
16. Dimensions of impulse are
a. $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
b. $\left[\mathrm{MT}^{-2}\right]$
c. $\left[\mathrm{MLT}^{-1}\right]$
d. $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-3}\right]$
17. Which of the following has the smallest value?
a. fermi
b. millimeter
c. angstrom
d. micron
18. The radius of a sphere is 5 cm . Its volume will be given by
a. $523.33 \mathrm{~cm}^{3}$
b. $5.0 \times 10^{2} \mathrm{~cm}^{3}$
c. $5.23 \times 10^{2} \mathrm{~cm}^{3}$
d. $5 \times 10^{2} \mathrm{~cm}^{3}$
19. The error in the measurement of radius of sphere is 0.3%. What is percentage error in measurement of its volume?
a. 0.3%
b. 0.9%
c. 0.6%
d. $4 / 3 \pi(0.3)^{3}$
20. An experiment measures quantities $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and X is calculated from the formula $X=a b^{2} / c^{3}$
The percentage errors in a, b, c are $\pm 1 \%, \pm 3 \%$ and $\pm 2 \%$ respectively.
The percentage error in x can be
a. $\pm 13 \%$
b. $\pm 4 \%$
c. $\pm 7 \%$
d. $\pm 1 \%$
21. If $\mathrm{f}=\mathrm{x}^{2}$, then the relative error in f is
a. $\Delta \mathrm{x} / \mathrm{x}$
b. $(\Delta x)^{2 / x}$
c. $(\Delta x)^{2}$
d. $2 \Delta x / x$
22. The density of the material of a cube is measured by measuring its mass and lengths of its sides. if the maximum errors in the measurement of mass and the length are 3% and 2% respectively, the maximum error in the measurement of density is
a. 1%
b. 9%
c. 5%
d. 7%
23. The significant figures in 0.009 is
a. 1
b. 3
c. 2
d. 4
24. The velocity ' v ' of a particle is given in terms of time ' t ' as $v=a t+\frac{b}{b+c}$
The dimensions of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are
a. $\quad\left[L^{2}\right][T]\left[\mathrm{LT}^{-2}\right]$
b. $\left[\mathrm{LT}^{-2}\right][\mathrm{L}][\mathrm{T}]$
c. $\quad\left[\mathrm{LT}^{-2}\right][\mathrm{LT}][\mathrm{L}]$
d. $[\mathrm{L}][\mathrm{LT}]\left[\mathrm{T}^{2}\right]$
25. The dimensions of quantities in one or more pairs of the following are same. Identify the pair
a. torque and force
b. angular momentum and work
c. energy and Young's modulus
d. light year and wave length
26. Checking the correctness of equation using the method of dimensions is based on
a. equality of inertial frames of reference
b. the types of system of units
c. principle of homogeneity of dimensions
d. none of these
27. $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$ represents
a. force
b. pressure
c. work
d. Planck's constant
28. Which of the following quantities is a scalar?
a. mass
b. velocity
c. momentum
d. diplacement
29. The minimum number of vectors of unequal magnitude required to produce zero resultant is
a. 2
b. 3
c. 4
d. more than 4
30. Two vectors \vec{A} and \vec{B} obey the relation $\vec{A}+\vec{B}=\vec{A}-\vec{B}$ and θ is angle between them, then
a. $\theta=120^{\circ}$
b. $\vec{B}=0$
c. $\theta=90^{\circ}$
d. $\vec{A}=0$
31. Two vectors \vec{A} and \vec{B} are $\vec{A}=2 \hat{i}+5 \hat{k}^{\wedge}$ and $\vec{B}=3 \hat{j}+4 k^{\wedge}$ their scalar product is
a. 20
b. $5 \sqrt{33}$
c. 23
d. 26
32. The condition of vectors \vec{A} and \vec{B} to be perpendicular is
a. $\vec{A} \cdot \vec{B}=1$
b. $\vec{A} \times \vec{B}=0$
c. $\vec{A} \cdot \vec{B}=0$
d. $\vec{A} \times \vec{B}=1$
33. Given $\vec{A}=5 \hat{i}+7 \hat{j}-3 k$ and $\vec{B}=2 \hat{i}+2 \hat{j}-m \hat{k} \cdot$ If \vec{A} and \vec{B} are perpendicular vectors, then value of m is
a. -2
b. -7
c. 8
d. -8
34. A vehicle is moving with a uniform speed ' v ' on a curved road of width ' b ' and radius of curvature ' R '. For providing the centripetal force to the vehicle, the angle of elevation required between the outer and inner edges of the road is
a. $\tan \theta=\frac{v^{2}}{R g}$
b. $\tan \theta=\frac{v}{\mathrm{Rg}^{2}}$
c. $\tan \theta=\frac{v}{\mathrm{Rg}}$
d. $\tan \theta=\frac{v}{R^{2} g}$
35. Two cars of masses M_{1} and M_{2} are revolving with same speed on circular paths of radii r_{1} and r_{2} respectively. The ratio of their centripetal accelerations will be
a. $\frac{r_{1}}{r_{2}}$
b. $\frac{r_{2}}{r_{1}}$
c.

d.

36. Newton's second law of motion connects
a. momentum and acceleration
b. change of momentum and velocity
c. rate of change of momentum and external force
d. rate of change of force and momentum
37. A particle is moving with a constant speed along a straight-line path. A force is not required to
a. increase its speed
b. decrease its momentum
c. change its direction
d. keep it moving with the same speed
38. Action and reaction forces do not balance each other because they
a. act on the same body
b. do not act on the same body
c. are in opposite directions
d. are not equal
39. An athlete runs some distance before taking a long jump so that he may
a. acquire large inertia of motion
b. overcome inertia of rest
c. get inertia of direction
d. acquired Kinetic energy
40. A machine gun fires a bullet of mass 40 gm with velocity $1200 \mathrm{~ms}^{-1}$. The person holding it can apply a maximum force of 144 Newton on the
gun. The maximum number of bullets that can be fired per second in
a. 3
b. 4
c. 5
d. 7
41. A force of 5 N acts on a body of weight 9.8 N . What is the acceleration produced in $\mathrm{M} / \mathrm{s}^{2}$.
a. 49.0
b. 1.96
c. 5.0
d. 0.51
42. The limiting friction between two bodies in contact independent of
a. nature of surfaces in contact
b. the area of surfaces in contact
c. normal reaction between the surfaces
d. all of the above
43. The Kinetic friction is always
a. less than rolling friction
b. equal to rolling friction
c. greater than rolling friction
d. may be less than, greater or equal to rolling friction
44. A force of 98 N is required to pull a body of mass 100 Kg over ice. The coefficient of friction is
a. 0.1
b. 0.8
c. 0.98
d. cannot be determined
45. The energy stored in a watch spring is
a. Kinetic energy
b. potential energy
c. heat energy
d. chemical energy
46. A motor boat is travelling with a speed of $30 \mathrm{~ms}^{-1}$. If the force on it due to water flow is 500 N , the power of the boat is
a. 150 KW
b. 1.5 KW
c. 15 KW
d. 150 W
47. Nms^{-1} is the unit of
a. impulse
b. power
c. energy
d. work
48. When the force retards the motion of a body the work done is
a. zero
b. negative
c. positive
d. + ve or -ve depending upon situation
49. If the momentum of a body is doubled, the Kinetic energy is
a. halved
b. unchanged
c. doubled
d. increased four time
50. A body falling from a height of 10 m rebounds from the floor. If it loses 2% of energy in the impact, how high will it rebound?
a. 10 m
b. 8 m
c. 12 m
d. none of the above
51. A uniform force of 4 N acts on a body of mass 8 Kg for a distance of 2.0 m . The K.E. required by the body is
a. 8 J
b. 64 J
c. 4 J
d. 16 J
52. A force \vec{F} acting on a body moving in a circle of radius r is always perpendicular to the instantaneous velocity \vec{v}. The work done by the force on the body in one complete revolution is
a. Fv
b. Fr
c. F. $2 \pi \mathrm{r}$
d. 0
53. Watt day is the unit of
a. power
b. energy
c. force
d. none
54. A hollow sphere and a solid sphere of same mass and radius are allowed to roll down an inclined plane from same height simultan-eously. Which will read the bottom first
a. hollow sphere
b. solid sphere
c. both together
d. none of the above
55. Mass in linear motion has its analog in rotational motion
a. moment of inertia
b. angular momentum
c. torque
d. weight
56. Weight of force is called
a. torque
b. weight
c. moment of inertia
d. angular momentum
57. Moment of inertia is independent of
a. mass of the body
b. shape of the body
c. location of axis of rotation
d. torque on the body
58. If earth shrinks suddenly to half of its present radius without change in mass, the duration of the day will be
a. 24 hours
b. 6 hours
c 96 hours
d. 12 hours
59. A boy suddenly comes and sits on a circular rotating table. What will remain conserved?
a. linear momentum
b. Kinetic energy
c. angular momentum
d. none of these
60. When the spring is loaded, the strain produced is
a. longitudinal
b. volumetric
c. shearing
d. none
61. The property of metals which allows them to be drawn into thin wires beyond their elastic limit without rupture is called
a. ductibility
b. elasticity
c. malleability
d. hardness
62. In steel the Young's modulus and the strain at the breaking point are $2 \times 10^{11} \mathrm{Nm}^{-2}$ and 0.15 respectively. The stress at the breaking point for steels is therefore
a. $\quad 1.33 \times 10^{11} \mathrm{NM}^{-2}$
b. $7.5 \times 10^{-3} \mathrm{Nm}^{-2}$
c. $1.33 \times 10^{12} \mathrm{Nm}^{-2}$
d. $3 \times 10^{10} \mathrm{Nm}^{-2}$
63. If the temperature of a liquid is raised, then its surface tension is
a. decreased
b. increased
c. irregular
d. equal to viscosity
64. Due to capillary action a liquid will fall in a tube, if the angles of contact is
a. acute
b. obtuse
c. 90°
d. zero
65. The CGS unit of coefficient of viscosity is
a. poise
b. newton
c. $\mathrm{Kg}-\mathrm{m}^{-1} \mathrm{~s}^{-1}$
d. $\mathrm{gs} / \mathrm{cm}^{-1}$
66. The clouds float in atmosphere because of
a. their low temperature
b. their low viscosity
c. their low density
d. creation of low pressure
67. Unit of modulus of elasticity is
a. dyne/cm
b. dyne/cm ${ }^{2}$
c. dyne-cm
d. dynes
68. The menisas of mercury in a capillary tube is
a. convex
b. concave
c. plane
d. uncertain
69. Hooke's law essentially defines
a. stress
b. strain
c. field point
d. elastic limit
70. Which one of the following quantities does not have the unit of force per unit area
a. stress
b. strain
c. Young's modulus of elasticity
d. pressure
71. Water is flowing through a tube of non-uniform cross-section. If the ratio of the radius of the tube at the entrance and exit is $3: 2$ then the ratio of velocity of liquid entering and leaving the tube is
a. 8:27
b. $4: 9$
c. $1: 1$
d. $9: 4$
72. Soap helps in better cleaning of clothes because
a. it reduces the surface tension of solution
b. it gives strength of solution
c. it absorbs the dirt
d. chemical of soaps change
73. The temperature of a gas is a measure of
a. the average Kinetic energy of gaseous molecules
b. the average potential energy of gaseous modulus
c. the average distance between the molecules of the gas
d. the size of the molecules of the gas
74. The temperature of a patient is $40^{\circ} \mathrm{C}$, his temperature of Fahrenheit scale will be
a. $104^{\circ} \mathrm{F}$
b. $72^{\circ} \mathrm{F}$
c. $96^{\circ} \mathrm{F}$
d. $100^{\circ} \mathrm{F}$
75. When water is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ its volume
a. increases
b. decreases
c. remains unchanged
d. first decreases and then increases

