8657/MH

AS-2057

ANALYTICAL GEOMETRY-VI

(Semester-II)

Time Allowed : 3 Hours]
[Maximum Marks : 36
Note :- The candidates are required to attempt two questions each from Sections A and 5 carrying 5.5 marks each and the entire Section C consisting of 7 short answer type questions carrying 2 marks each.

SECTION-A

1. (a) A variable plane moves so that the sum of reciprocals of its intercepts on the three coordinates axes is constant. Show that it passes through a fixed point.
(b) Show that the points $(0,-1,-1),(4,5,1)$, $(3,9,4),(-4,4,4)$ are coplanar.
2. (a) Find the angle between the planes

$$
a x+b y+c z-d=0 \text { and } e x+f y+g z-h=0
$$

(b) A plane makes intercepts

$$
O A=a, O B=b, O C=c
$$

on the axes. Find the area of triangle $A B C$.
3. (a) Find the angle between the lines

$$
\frac{x}{1}=\frac{y}{0}=\frac{z}{-1} \text { and } \frac{x}{3}=\frac{y}{4}=\frac{z}{5}
$$

(b) Find the locus of a point which moves so that its distance from the line $x=y=z$ is twice its distance from the plane $x+y+z=1$.
4. (a) Find the shortest distance between the axis of z and the line

$$
\begin{aligned}
& a x+b y+c e+d=0 \\
& a^{\prime} x+b^{\prime} y+c^{\prime} z+d=0
\end{aligned}
$$

$$
3
$$

(b) Write a short note on intersection of three planes. 2.5

SECTION-B

5. Explain four point form of sphere. Find the equation of the sphere through the points

$$
(1,-4,3),(1,-5,2),(1,-3,0)
$$

and whose centre lies on the plane

$$
x+y+z=0
$$

6. (a) Find the condition that the plane

$$
1 x+m y+n z=p
$$

may touch the sphere

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

(b) Find the equation of the sphere in the positive octant touching the co-ordinate planes and the plane

$$
2 x+3 y+6 z-24=0
$$

7. Define General form of Right Circular Cone find she ecuation of the right circular cone which passes through the points ($1,2,2$) and has vertex at the
origin and axis, the line

$$
\frac{x}{2}=\frac{y}{-4}=\frac{z}{3}
$$

8. (a) Find the equation to the quadric cone which passes through three co-ordinates axes and three mutually perpendicular lines

$$
\frac{x}{1}=\frac{y}{-2}=\frac{x}{3}, \quad \frac{x}{1}=\frac{y}{-1}=\frac{z}{-1}, \quad \frac{x}{5}=\frac{y}{4}=\frac{z}{1} .
$$

(b) Find the equation of the cone with vertex at the origin and which pass through the curves given by $x+y=b, z=a$.

SECTION-C

9. (a) The direction ratios of a line are 6, 2, 3. Find the direction cosines.
(b) Find the equation of the plane through the points ($2,2,1$), ($1,-2,3$) and parallel to the x-Axis.
(c) State the condition of perpendicularity of a line and a plane.
(d) Write a short note on Reciprocal Cone.
(e) Define the Coaxial system of spheres with example.
(f) Find the image of the point $(1,2,-4)$ in the line

$$
\frac{x-3}{2}=\frac{y-1}{-5}=\frac{z+2}{3}
$$

(g) Find the equation of the right circular cone generated by rotating the line

$$
\frac{x}{1}=\frac{y}{2}=\frac{z}{3}
$$

about the line

$$
\frac{x}{-1}=y=\frac{z}{2}
$$

$2 \times 7=14$

