1206/MH

AS-2058

PARTIAL DIFFERNTIAL EQUATION-V

(Semester-II)

Time Allowed : 3 Hours]
[Maximum Marks : 40

Note :- The candidates are required to attempt two questioris each from Sections A and B carrying 6 marks each and the entire Section C. consisting' of 8 short answer type questions carrying 2 marks each.

SECTION-A

1. (a) Solve:

$$
x s+q-x p-z=(1-y)(1+\log x)
$$

(b) Find the surface passing through the parabolas
$z=0, y^{2}=4 a x$ and $z=1, y^{2}=-4 a x$ and satisfying the equation $x r+2 p=0$.
2. (a) Find a complete integral of $p^{2}+q^{2}-2 p x-$ $2 q y+1=0$ using Charpit's method. .
(b) Find the surface which intersects the surfaces of the system $z(x+y)=c(3 z+1)$ cut orthogonally and which passes through the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=$ $1, z=1$.
3. (a) Solve $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$ for general solution.
(b) Find the equation of integral surface of partial differential equation $x^{2} p+y^{2} q+z^{2}=0$ which passes through the hyperbola $z=1$, $x y=x+y$.
4. Reduce the equation $x^{2}(y-1) r-x\left(y^{2}-1\right) s+$ $y(y-1) t+x s p-q=0$ to canonical form and hence solve it.

SECTION-B

5. (a) Solve partial differential equation :

$$
\left(D^{2}+2 D D^{\prime}+D^{\prime 2}\right) z=2 \cos y-x \sin y
$$

(b) Solve partial differential equation:

$$
\left(D^{2}-D D^{\prime}-2 D^{\prime 2}+2 D+2 D^{\prime}\right) z=e^{(x+2 y)}+x y
$$

6. Solve the partial differential equation :

$$
\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=x^{2} \sin (x+y)
$$

7. The temperature at one end of a bar 100 cm long with insulated sides is kept at $0^{\circ} \mathrm{C}$ and other end at $100^{\circ} \mathrm{C}$ until steady state conditions prevail. The two ends are then suddenly insulated and kept so. Find the temperature distribution.
8. A tightly stretched string with fixed ends $x=0$ and $x=I$ is initially in a position given by
$y=\sin ^{3} \frac{\pi x}{l}$. Find displacement if it is released from this position.

SECTION-C

9. Attempt all questions:
10. What are the conditions on partial differential equation to classify Hyperbolic, elliptic or parabolic?
11. Find the complete integral of:

$$
(p-q)(z-p x-q y)=1
$$

3. Find the particular integral of :

$$
\left(D^{2}-D D^{\prime}-3 D^{\prime 2}\right) z=10 \frac{e^{x}}{e^{y}}
$$

4. Solve partial differential equation :

$$
\left(D^{2}-D^{\prime 2}+D+3 D^{\prime}-2\right) z=0
$$

5. Eliminate a and b from $z=a x e^{y}+\frac{1}{2} a^{2} e^{2 y}+b$ to form partial differential equation.
6. Show that the equation $x p=y q$ and $z(x p+q y)=2 x y$ are compatible.
7. Obtain the general solution of Laplace equation.
8. Find the deflection of a vibrating string of unit length having fixed ends with initial velocity zero and initial-deflection is $f(x)=x-x^{3}$.
