8696/МH

CS-2057 ALGEBRA-II Paper-III
 (Semester-VI)

Note :- The candidates are required to attempt two questions each from Sections A and B carrying marks 5.5 each and the entire Section C consisting of 10 questions carrying 1.4 marks each.

SECTION-A

1. (a) Show that any plane passing through $(0,0,0)$ is a subspace of R^{3}.
(b) Examine whether $(1,-3,5)$ belongs to.the linear space generated by S, where $S=\{(1,2,1),(1,1,-1),(4,5,-2)\}$ or not?
2. (a) Let V be a vector space of functions $f: R \rightarrow R$. Then show that all f where $f(-2)=0$ is a subspace or not of V ? Justify your answer.
(b) State and prove Replacement theorem. 2.5
3. (a) Let V be vector space of 2×2 matrices of R and W be asset of all 2×2 diagonal matrices over R. Show that W is a subspace of V and find basis of V / W.
(b) If V and W are fine dimensional subspaces of a fine dimensional vector space $U(F)$. Prove that $V+W$ is also finite dimensional and $\operatorname{dim}(V+W)=\operatorname{dim} V+\operatorname{dim} W-\operatorname{dim} V \cap W$.
4. (a) Extend $\{(-1,2,5)\}$ to two different basis of R^{3}.
(b) Find basis and dimension of the solution space W of the following system of equations:

$$
\begin{aligned}
& x+2 y-4 z+3 t-s=0 \\
& x+2 y-2 z+2 t+s=0 \\
& 2 x+d y-2 z+3 t+4 s=0
\end{aligned}
$$

SECTION-B

5. (a) Find linear transformation $T: R^{2} \rightarrow R^{2}$ such that $T(2,3)=(1,2)$ and $T(3,2)=(2,3)$.
(b) Prove that non-zero eigen vectors corresponding to distinct eigen values of a linear operator are linearly independent.
6. (a) Find range, rank, null space and nullity for $T(x, y)=(x+y, x-y, y)$ transformation on a vector space R^{2}.
(b) Find a linear map $T: R^{4} \rightarrow R^{3}$ whose null space is generated by $(1,2,3,4)$ and $(0,1,1,1)$.
7. Find characteristic and minimal polynomial of a matrix $\left[\begin{array}{lll}6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3\end{array}\right]$, using idea of minimal polynomial, find inverse of matrix.
8. (a) If the matrix of the linear operator T on R^{3} relative to basis: $B=\left\{\left(e_{1}, e_{2}, e_{3}\right)\right\}=\{(1,0,0),(0,1,0),(0,0,1)\}$ is
$\left[\begin{array}{ccc}0 & -1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$. Find the matrix of T relative to basis
$B_{1}=\{(0,-1,1),(1,-1,-1),(1,-1,0)\}$.
(b) Prove that two finite dimensional vector space $V(F)$ and W(F) over the same field F are isomorphic iff they have same dimensions.

SECTION-C

9. (a) Show that all polynomials over R with constant term 2 doesn't form vector space.
(b) If S 1 s a subspace of V then show that $\mathrm{L}(\mathrm{S})=\mathrm{S}$.
(c) Find value of K so that the vector $(1,-2, k)$ becomes linear combination of the vectors ($3,0,-2$) and ($2,-1,-5$).
(d) If S is a subset of V, then prove that $S^{\perp}=\operatorname{span}(S)^{\perp}$.
(e) State and prove Pythagoras theorem for orthogonal set of vectors.
(f) Prove that minimal polynomial of a matrix exist uniquely.
(g) Define singular transformation and Nullity of transformation.
(h) Show that set containing vector 0 is always linear dependent.
(i) The minimal polynomial of an operator T divides every polynomial which has T as a Zero.
(j) Prove that if o is an eigen value ofa linear operator Ton V(F) iff a is a root of the miniml polynomial of T.
$10 \times 1.4=14$
