8697/MH

AS-2057
 DISCRETE MATHEMATICS-II Paper-IV
 Semester-VI

Note :- The candidates are required to attempt two questions each from Sections A and B carrying marks 5.5 each and the entire Section C consisting of 10 questions carrying 1.4 marks each.

SECTION-A

1. (a) Give Big-O estimate for $f(n)=3 n \log n!+\left(n^{2}+3\right) \log n$.
(b) Prove that $f(x)=8 x^{3}+5 x^{2}+7$ is $\Omega(g(x))$, where $g(x)=x^{3}$.
2. (a) Solve $S_{n}+5 S_{n-1}+6 S_{n-2}=3 n^{2}-2 n+1$.
(b) Find sequence whose generating function is $\frac{1}{1-z-z^{2}}$.
3. (a) Solve recurrence relation $S(n)-4 S(n-2)=0, S(0)=10$, $S(1)=1$ for $n \geq 0$ using generating function.
(b) For $\mathrm{S}(\mathrm{n})=3^{\mathrm{n}}$ verify that $\mathrm{G}\left(\mathrm{S}^{*} \mathrm{a}, \mathrm{Z}\right)=\mathrm{G}(\mathrm{S}, \mathrm{Z}) \mathrm{G}(\mathrm{a}, \mathrm{Z})$.
4. (a) For the recurrence relation $\mathrm{a}_{\mathrm{n}}=8 \mathrm{a}_{\mathrm{n}-1}+10^{\mathrm{n}-1}$ with initial condition $a_{0}=1$. Find the generating function and the explicit formula for a_{n}.
(b) Find generating function for the sequence of Fibonacci numbers.

SECTION-B

5. (a) Prove that set D_{n} of all positive divisors of n is a bounded distributive lattice.
(b) Prove that for a bounded distributive lattice L, the complements are unique if they exist.
6. (a) Find the circuit $\left(x_{1}-\left(\left(x_{2} \cdot \bar{x}_{3}\right)+\left(\bar{x}_{2} \cdot x_{3}\right)\right)\right)+\left(\bar{x}_{1} \cdot x_{2} \cdot x_{3}\right)$.
(b) Simplify the Boolean expression:

$$
F(X, Y, Z)=(\bar{X} . Z)+(V . Z)+(V . \bar{D})
$$

and write in min. term normal form.
7. (a) Minimize the logic programme using K map:

$$
f(A, B, C, D)=\sum(0,1,2,3,5,7,8,9,10,4) .
$$

(b) Reduce using Boolean rules $x y+x z+y z=x y+\left(x^{\oplus} y\right) z$.
8. (a) Write the function $x \vee y^{\prime}$ in the disjunction normal form in three variables x, y and z.
(b) Simplify the Boolean expression and make circuit diagram using NAND gate only.
$F(A, B, C, D)=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} C \bar{D}+A \bar{B} \bar{C} \bar{D}+A \bar{B} \bar{C} D+A \bar{B} C \bar{D}+A \bar{B} C D+A B C \bar{D}+A B C D$

SECTION-C

9. (a) Define ceiling function and characteristic function.
(b) If f be mod-11 function then find the value of $f(-253)$.
(c) The numeric value of a defined as $\mathrm{a}_{\mathrm{r}}=\left\{\begin{array}{l}2,0 \leq r \leq 3 \\ 2^{-r}+5, r \geq 4\end{array}\right.$, find S^{-2} a.
(d) Determine $C(5,3)$ by recursive definition of binomial coefficient.
(e) Write short note on recursion.
(f) Show that n , nth root of unity forms a group under multiplication.
(g) Prove that inverse of an element of group is unique.
(h) Draw operation table of $G=\{0,1,2,3,4,5\}$ under multiplication modulo 6.
(i) Define ring and sub ring.
(j) Prove that dual of distribution lattice is distributive.
(5)
(6)
(7)
(8)
