Roll No.

Total Pages: 3

8691/MH

2

CS-2057 INORGANIC CHEMISTRY-I

(Common for B.Sc., B.Sc. Biotech.) (Semester-VI)

Time Allowed: 3 Hours] [Maximum Marks: 26

Note :- Candidates are required to attempt five questions in all selecting two questions each from Section A and B while Q.No. IX of Section C is compulsory.

SECTION-A

- I. (a) Define HSAB Principle. Discuss the applications of hard-soft acid-base principle.
 (b) [Agl₂]⁻ is stable but [AgF₂]⁻ is unstable. Why?
 (c) Classify the following into hard, soft and borderline acids and bases:
 1', CO, Ni²⁺+, CO₂, Ag⁺, NH₄⁺, SO₃²⁻, BH₃, H₂ O, NO'₃
- II. (a) How electro-negativity can be used to explain hardness and softness of acids and bases?
 - (b) Draw stepwise structural arrangement observed in associative mechanism in square-planar substitution.

III.	(a)	Compare roles of Ca ²⁺ and Zn ²⁺ at the active sites 9f enzymes. In what ways is Ca ²⁺ advantageous over alkali metal ions?	2
	(b)	Explain Cooperativity in haemoglobin. Discuss its mechanism.	2
IV.	(a)	What is meant by Nitrogen fixation ? What are the main fundamental requirements of biological N_2 fixation ?	2.5
	(b)	What is Bohr effect? Explain with the help of graph.	1.5
		SECTION-B	
V.	(a)	prepared? Give two important applications of silicones.	2
	(b)	Discuss the general features of $d\pi - p\pi$ model for bonding in $(NPCL_2)_3$.	2
VI.	(a)	What are homomorphic and heteromorphic π -systems ? Explain.	2
	(b)	Write a brief account of (i) Silicone oils, (ii) Silicone rubbers, and (iii) Silicone resins.	2
VII.	(a)	What happens when one of the Ph ₃ P ligand in Wilkinson catalyst is replaced by Me ₃ P in the	
	(b)	, , , , , , , , , , , , , , , , , , , ,	2
		examples of each type.	2

VIII. (a) Describe bonding in metal carbonyls. How does IR spectroscopy help in explaining bonding in metal carbonyls?

2

(b) Write IUPAC names of the following:

2

- (i) $Zn(C_2H_5)_2$
- (ii) $CH_3 SnH_2CI$
- (iii) Fe($\eta^5 C_5 H_5$)₂
- (iv) Mn[($\eta^3 C_6H_5$) (CO)₄].

SECTION-C (Compulsory Question)

- IX. (a) What is Symbiosis? Discuss theoretical basis of hardness and softness.
 - (b) What is Porphyrin? Draw the structure of Heme.
 - (c) Write a brief account of Na⁺ K ⁺pump.
 - (d) Why do polyphosphazenes chain prefer a cis-trans conformation to a trans-trans conformation?
 - (e) N_2 is isoelectronic with Co, yet it is a poor o-donor compared to Co. Explain. (5x2=10)