Roll No. **Total Pages: 3** ## 8691/MH 2 ## CS-2057 INORGANIC CHEMISTRY-I (Common for B.Sc., B.Sc. Biotech.) (Semester-VI) Time Allowed: 3 Hours] [Maximum Marks: 26 **Note :-** Candidates are required to attempt five questions in all selecting two questions each from Section A and B while Q.No. IX of Section C is compulsory. ## **SECTION-A** - I. (a) Define HSAB Principle. Discuss the applications of hard-soft acid-base principle. (b) [Agl₂]⁻ is stable but [AgF₂]⁻ is unstable. Why? (c) Classify the following into hard, soft and borderline acids and bases: 1', CO, Ni²⁺+, CO₂, Ag⁺, NH₄⁺, SO₃²⁻, BH₃, H₂ O, NO'₃ - II. (a) How electro-negativity can be used to explain hardness and softness of acids and bases? - (b) Draw stepwise structural arrangement observed in associative mechanism in square-planar substitution. | III. | (a) | Compare roles of Ca ²⁺ and Zn ²⁺ at the active sites 9f enzymes. In what ways is Ca ²⁺ advantageous over alkali metal ions? | 2 | |------|-----|--|-----| | | (b) | Explain Cooperativity in haemoglobin. Discuss its mechanism. | 2 | | IV. | (a) | What is meant by Nitrogen fixation ? What are the main fundamental requirements of biological N_2 fixation ? | 2.5 | | | (b) | What is Bohr effect? Explain with the help of graph. | 1.5 | | | | SECTION-B | | | V. | (a) | prepared? Give two important applications of silicones. | 2 | | | (b) | Discuss the general features of $d\pi - p\pi$ model for bonding in $(NPCL_2)_3$. | 2 | | VI. | (a) | What are homomorphic and heteromorphic π -systems ? Explain. | 2 | | | (b) | Write a brief account of (i) Silicone oils, (ii) Silicone rubbers, and (iii) Silicone resins. | 2 | | VII. | (a) | What happens when one of the Ph ₃ P ligand in Wilkinson catalyst is replaced by Me ₃ P in the | | | | (b) | , | 2 | | | | examples of each type. | 2 | VIII. (a) Describe bonding in metal carbonyls. How does IR spectroscopy help in explaining bonding in metal carbonyls? 2 (b) Write IUPAC names of the following: 2 - (i) $Zn(C_2H_5)_2$ - (ii) $CH_3 SnH_2CI$ - (iii) Fe($\eta^5 C_5 H_5$)₂ - (iv) Mn[($\eta^3 C_6H_5$) (CO)₄]. ## SECTION-C (Compulsory Question) - IX. (a) What is Symbiosis? Discuss theoretical basis of hardness and softness. - (b) What is Porphyrin? Draw the structure of Heme. - (c) Write a brief account of Na⁺ K ⁺pump. - (d) Why do polyphosphazenes chain prefer a cis-trans conformation to a trans-trans conformation? - (e) N_2 is isoelectronic with Co, yet it is a poor o-donor compared to Co. Explain. (5x2=10)