B.A./B.Sc (General) Ist Semester (0001) Examination 0044

MATHEMATICS

Paper: II
(Calculus-I)

Time : 3 Hours]

[Max. Marks: 30
Note :- Attempt five questions in all, selelcting at least two questions from each Section.

Section-A

1. (a) Solve for x the Inequality $\frac{x+2}{n-2}<\frac{4 n-1}{2 n-3}$.
(b) Prove that $\left|x-\frac{1}{2}\right|<\frac{1}{3}$ iff $\frac{1}{11}<\frac{1-x}{1+x}<\frac{5}{7}$.
2. (a) State order completeness property of reals. Does the set of rational numbers posses this property ? Justify your answer.
(b) Find the least upper bound and greatest lower bound of the set $S=\left\{\frac{2-x}{1-x} ; x>0, x \neq 1\right\}$.
3. (a) Is the union of two hounded sets a bounded set ? What do you say about its converse ? Justify your answer.
(b) If $f(x)=\left[x \frac{1}{x}\right]$, does $\underset{x \rightarrow 1 / 2}{\operatorname{Lt}} f(x)$ exist, explain your answer.
4. (a) Prove that if a function $f(x)$ is continuous at a point a and $f(a)=0$, then prove that these exists some neighbourhood of a where flx) possesses the same sign as that if $f(a)$.
(b) Determine the values of a and b for which

$$
\operatorname{Lt}_{n \rightarrow 0} \frac{x(1+\operatorname{acosh} x)-b \sinh x}{x^{3}}=1
$$

Section-B

5. (a) By using Lagrange's mean value theorem prove that:

$$
|\sin x-\sin y| \leq|x-y| \text { for all } x, y \in R
$$

(b) Calculate the approximate value of $\sqrt{24}$ to three decimal places by Taylor's expansion.
6. (a) Use Maclaurin'sv theorem to show that :

$$
\begin{aligned}
\log (1+x)= & x-\frac{x^{2}}{2}+\frac{x^{3}}{2}-\ldots \ldots \ldots \ldots . . \\
& +\frac{(-1)^{n-1}}{n} x^{n}-\frac{x^{n}}{(1+\theta x)^{n}}, 0<\theta<1
\end{aligned}
$$

(b) Use mean value theorem to show that:

$$
\begin{align*}
& \quad \frac{\pi}{6}+\frac{2 n-1}{\sqrt{3}} \leq \sin ^{-1} x \leq \frac{\pi}{6}+\frac{2 n-1}{2 \sqrt{1-x^{2}}} \\
& \text { where } \frac{1}{2} \leq x<1
\end{align*}
$$

7. (a) If $y=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \sinh ^{-1} \frac{x}{a}$, show that:

$$
\left(\frac{d y}{d x}\right)^{2}=x^{2}+a^{2}
$$

(b) Prove that $\tanh ^{-1} x=\frac{1}{2} \log \frac{1+x}{1-x},-1<x<1$ and find its derivative also.
8. (a) Prove that:

$$
\begin{aligned}
& \frac{d^{n}}{d x^{n}}\left(\frac{\log x}{x}\right)=\frac{(-1)^{n} \ln }{x^{n+1}} \\
& {\left[\log x-1-\frac{1}{2}-\frac{1}{3} \ldots \ldots,-\frac{1}{n}\right] }
\end{aligned}
$$

(b) If $y=\sin m(\sin x)$, show that:

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}-m^{2}\right) y_{n}=0
$$

Hence show that:
$y_{n}(0)=\left\{\begin{array}{c}0, \quad \text { where } n \text { is even } \\ \left.m\left(1^{2}-m^{2}\right)\left(3^{2}-m^{2}\right) \ldots \ldots . . L(n-2)^{2}-m^{2}\right]\end{array}\right.$
when n is odd.

