(ii) Questions :8]

Sub. Code :

Exam. Code:

0	0	0	2

B.A./B.Sc. (General) 2nd Semester Examination
 1047
 MATHEMATICS Paper : I (Solid Geometry)

Time : 3 Hours]

Note :- Attempt five questions, selecting at least two questions from each Section.

Section - I

I. (a) Shift the origin to a suitable point so that the equation :
$2 x^{2}+3 y^{2}+z^{2}+x y+z x-x-10 y-4 z+22=0$
is transformed into an equation in which the
first degree terms are absent.
(b) If $<\mathrm{I}_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}>$ and $<\mathrm{I}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}>$ be the direction cosines of two lines inclined at an angle θ, show that the direction - cosines of the direction bisecting them are :
$<\left(\frac{l_{1}+l_{2}}{2}\right) \sec \frac{\theta}{2},\left(\frac{m_{1}+m_{2}}{2}\right) \sec \frac{\theta}{2},\left(\frac{n_{1}+n_{2}}{2}\right) \sec \frac{\theta}{2}$
2. (a) Find the equation of the sphere circumscribing
the tetrahedron whose faces are $\mathrm{x}=0, \mathrm{y}=0$,
$z=0$ and $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
(b) Find the locus of the centres of the spheres passing through the fixed point $(0,2,0)$ and touching the plane $\mathrm{y}=0$.
3. (a) Prove that every sphere through the circle
$x^{2}+y^{2}-2 a x+r^{2}=0, z=0$ cuts orthogonally
every Sphere through the circle $x^{2}+z^{2}=r^{2}$,
$y=0$.
(b) Find the equation of a sphere which belongs to the coaxial system whose limiting points are $(1,2,0),(2,2,0)$ and which passes through the point $(3,-1,0)$.
4. (a) Find the equation of the right circular cylinder described on the circle through the points
$(2,2,0),(0,2,0)(0,0,2)$ as the guiding
circle.
(b) Find the equation of the cylinder whose generators are parallel to the line $\frac{x-4}{2}=\frac{y}{5}=\frac{z-3}{-4}$ and whose guiding curve is the hyperbola $4 x^{2}-3 y^{2}=5, z=2$.

Section - II

5. (a) The section of a cone whose vertex is P and guiding curve is the ellipse $\quad \frac{x^{2}}{a^{2}} 2^{+\frac{y^{2}}{b^{2}}}=1$,
$z=0$ by the plane $x=0$ is a rectangular
hyperbola. Show that locus of P is
$\frac{x^{2}}{a^{2}}+\frac{x^{2}+z^{2}}{b^{2}}=1$.
(b) Find the equation of cone with vertex $(5,4,3)$ and guiding curve $3 x^{2}+2 y^{2}=6, y+z=0$.
6. (a) Show that the plane $6 x+3 y-2 z=0$ cuts the cone $y z+z x+x y=0$ in perpendicular lines.
(b) Prove that the tangent planes to the cone $l y z+m z x+n x y=0$ are at right angles to the generators of the cone $I^{2} x^{2}+m^{2} y^{2}+n^{2} z^{2}-2 m n y z-2 n \mid z x$
$-2 \operatorname{lm} x y=0$
3,3
7. (a) Show that $33 x^{2}+13 y^{2}-95 z^{2}-144 y z-96 z x$
$48 x y=0$ represents a right circular cone
whose axis is the line $3 x=2 y=z$. Find its
vertical angle.
(b) Show that the locus of the foot of the
perpendicular from the centre of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}{ }^{2}=1$ to any of its tangent plane is: $\left(x^{2}+y^{2}+z^{2}\right)^{2}=a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}$
8. (a) Reduce the equation
$11 x^{2}+10 y^{2}+6 z^{2}-8 y z+4 z x-12 x y+72 x$

$$
72 y+36 z+150=0
$$

to the standard form and show that it represents an ellipsoid. Also find the equations of the axes.
(6)
(b) If a right circular cone has three mutually perpendicular generators, then show that its vertical angle is $\tan ^{-1} \sqrt{ } 2$ 4,2

