(ii) Questions :8 Sub. Code :

Exam. Code:

0	0	0	2

B.A./B.Sc. (General) 2nd Semester
 1048

MATHEMATICS

 Paper: II Calculus-IITime : 3 Hours]
[Max. Marks: 30
Note :- (1) Attempt five questions in all, selecting at least two questions from each section.
(2) Each questions carries 6 marks.

SECTION-I

1. (i) Show that the line joining the two points of inflexion of the curve :

$$
y^{2}(x-a)=x^{2}(x+a), x \neq \pm a
$$

subtends an angle $\pi / 3$ at the origin.
(ii) Trace the curve $y^{2}=(x+1)^{3}$.
2. (i) Find the asymptotes of the curve :

$$
x^{2} y+x y^{2}+2 x^{2}-2 x y-y^{2}-6 x-2 y+2=0
$$

and show that they cut the curve in at most three points which lie on the straight line $2 x-3 y-4=0$.
(ii) Determine the position and nature of the double points on the curve :

$$
x^{3}-y^{2}-7 x^{2}+4 y+15 x-13=0
$$

3. (i) Define circle of curvature. Find the equation of the curve

$$
\sqrt{x}+\sqrt{y}=\sqrt{a} .
$$

(ii) Show that the points of intersection of the curve $x y\left(x^{2}-y^{2}\right)-25 x^{2}-9 y^{2}+144=0$ and its asymptotes lie on ellipse whose eccentricity is $4 / 5$.
4. (i) If C_{o}, C_{p} denote the lengths of chord of curvatures of the cardioid $r=a(1+\cos \theta)$ along and perpendicular to the radius vector through any point respectively.
Prove that:

$$
3\left(C_{0}^{2}+C_{p}^{2}\right)=8 a C_{0} .
$$

(ii) Find the interval in which the curve $y=\left(x^{2}+4 x+5\right) e^{-x}$ is concave upwards or downwards.

SECTION-II

5. (i) If $\int_{0}^{\pi / 4} \tan ^{n} x d x$, show that, for $n>1, I_{n}+I_{n-2}=\frac{1}{n-1}$. Hence deduce the value of I_{3}.
(ii) Evaluate $\int \cosh ^{-1} \frac{1+x^{2}}{1-x^{2}} d x$.
6. (i) Find the length of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ measured from ($0, a$) to any point (x, y).
(ii) Find the volume of the solid obtained by revolving the area included between the curves $y^{2}=x^{3}$ and $x^{2}=y^{3}$. about X-axis.
7. (i) Find the surface area of the solid obtained by revolving the curve $y=2 x+1+\frac{1}{x^{2}} \quad$ about x-axis for $1 \leq x \leq 2$.
(ii) Use Simpson's rule with $\mathrm{n}=4$ to approximate

$$
\int_{-1}^{1}\left(x^{3}+1\right) d x . \text { Also find the error. }
$$

8. (i) Evaluate :

$$
\operatorname{Lim}_{n \rightarrow \infty} \frac{1}{\mathrm{n}^{16}}\left(1^{15}+2^{15}+\ldots+\mathrm{n}^{15}\right)
$$

(ii) Derive the reduction formula for $\int x^{n} \sin (a x) d x$.

$$
\text { Hence evaluate } \int_{0}^{\pi / 2} x^{3} \sin (x) d x
$$

