(i) Printed Pages:3]

Roll No.

(ii) Questions :8]

Sub. Code: 0 1 4 5

Exam. Code:

0 0 0 2

B.A./B.Sc.(General) 2nd Semester 1055 MATHEMATICS Paper -III: Theory of Equations

Time: 3 Hours [Max. Marks: 30

Note: Attempt **five** questions, selecting at least **two** questions from each section. All question carry equal marks.

UNIT-I

1. (a) State Euclid's algorithm. Show that the remainder when the polynomial f(x) is divided by $(x - \alpha)(x - \beta)$ where $\alpha \neq \beta$ is:

$$\frac{(x-\beta) f(\alpha) - (x-\alpha) f(\beta)}{\alpha - \beta}.$$

3

(b) If ax + bx + c has a factor of the form $x + \lambda x + 1$, Show that : $a^2 - c^2 = ab$.

3

2. (a) If $a + \sqrt{b}$ is a root of equation f(x) = 0 with rational coefficients of degree ≥ 1 , a, b ε Q, b>0 but not perfect square show that $a - \sqrt{b}$ is also a root of f(x) = 0.

3

(b) Find a real polynomial of least defgree having roots -2, 1- i and satisfying condition f(3) = 15.

3

III. (a) Solve the equation $y^{3} = 15y^{2} + 62y = 72 = 0$

$$x^3$$
 - $15x^2$ + $62x$ - 72 = 0,
one root being double the other.

3

(b) Solve the equation:

$$x^4$$
 - $8x^3$ + $14x^2$ + $8x$ - 15 = 0,
given that two of its roots are equal in magnitude but
opposite in sign .

3

IV. (a) If α , β , γ are roots of $2x^3 + x^2 + x + 1 = 0$, form an equation whose roots are :

$$\frac{1}{\beta^2} + \frac{1}{\gamma^2} - \frac{1}{\alpha^2}$$
, $\frac{1}{\gamma^2} + \frac{1}{\alpha^2} - \frac{1}{\beta^2}$, $\frac{1}{\alpha^2} + \frac{1}{\beta^2} - \frac{1}{\gamma^2}$.

(b) Diminish the roots of the equation:

 $a_0 x^3 + 3a_1 x^2 + 3a_2 x + a_3 = 0$ by h and find the condition that the second and third terms may be removed simultaneously.

Hence solve the equation.

$$x^3 + 6x^2 + 12x - 19 = 0$$
.

3

UNIT-II

- V. (a) Use Cardon's method to solve $28x^3 9x^2 + 1 = 0$.
 - (b) Solve by descrate 's method x^4 $8x^2$ 24x + 7 = 0.

- VI. (a) Apply Ferrari's method to solve x^4 $10x^2$ 20x 16 = 0.
 - (b) Show that the Parabola $y = x^2$ meets the hyperbola xy + 8x + 4y + 3 = 0 in a single point.
- 3
- VII. (a) If the integral roots of $x^5 25x^4 + 160x^3 281x^2 257x 440 = 0$ lie between -1 and 24. Find them by using Newton's method of divisors.
- 3

- (b) Find the roots of the equation $x^3 3x + 1 = 0$ by trigonometric method.
- 3

VIII. (a) Discuss the nature of roots of the equation $x^3 + 3x + 2 = 0$.

2

2

- (b) Reduce x^3 $15x^2$ 357x + 5491 = 0 to standard form.
- 2
- (c) Find the upper and lower limits of the real roots of the equation:
 - $3x^4$ $12x^2$ + 17x 19 = 0 by method of grouping.