(ii) Questions :8 Sub. Code :

B.A./B.Sc.(General) 2nd Semester

 1055
MATHEMATICS

Paper -III : Theory of Equations

Time: 3 Hours]
Note :- Attempt five questions, selecting at least two questions from each section. All question carry equal marks.

UNIT-I

1. (a) State Euclid's algorithm. Show that the remainder when the polynomial $f(x)$ is divided by $(x-\alpha)(x-\beta)$ where $a \neq \beta$ is:
$\frac{(x-\beta) f(\alpha)-(x-\alpha) f(\beta)}{\alpha-\beta}$.
(b) If $a x+b x+c$ has a factor of the form $x+\lambda x+1$, Show that: $a^{2}-c^{2}=a b$.
2. (a) If $a+\sqrt{b}$ is a root of equation $f(x)=0$ with rational coefficients of degree $\geq 1, a, b \varepsilon Q, b>0$ but not perfect square show that $a-\sqrt{b}$ is also a root of $f(x)=0$.
(b) Find a real polynomial of least defgree having roots -2 , $1-i$ and satisfying condition $f(3)=15$.
III. (a) Solve the equation

$$
x^{3}-15 x^{2}+62 x-72=0
$$

one root being double the other.
(b) Solve the equation:
$x^{4}-8 x^{3}+14 x^{2}+8 x-15=0$, given that two of its roots are equal in magnitude but opposite in sign.
IV. (a) If α, β, γ are roots of $2 x^{3}+x^{2}+x+1=0$, form an equation whose roots are:
$\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}-\frac{1}{\alpha^{2}}, \frac{1}{\gamma^{2}}+\frac{1}{\alpha^{2}}-\frac{1}{\beta^{2}}, \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}-\frac{1}{\gamma^{2}}$.
(b) Diminish the roots of the equation:
$a_{0} x^{3}+3 a_{1} x^{2}+3 a_{2} x+a_{3}=0$ by h and find the condition that the second and third terms may be removed
simultaneously.
Hence solve the equation.
$x^{3}+6 x^{2}+12 x-19=0$.

UNIT-II

V. (a) Use Cardon's method to solve $28 x^{3}-9 x^{2}+1=0$.
(b) Solve by descrate's method $x^{4}-8 x^{2}-24 x+7=0$.
VI. (a) Apply Ferrari's method to solve $x^{4}-10 x^{2}-20 x-16=0$.
(b) Show that the Parabola $y=x^{2}$ meets the hyperbola $x y+8 x+4 y+3=0$ in a single point.
VII. (a) If the integral roots of $x^{5}-25 x^{4}+160 x^{3}-281 x^{2}-257 x-440=0$ lie between -1 and 24. Find them by using Newton's method of divisors.
(b) Find the roots of the equation $x^{3}-3 x+1=0$ by trigonometric method.
VIII. (a) Discuss the nature of roots of the equation $x^{3}+3 x+2=0$
(b) Reduce $x^{3}-15 x^{2}-357 x+5491=0$ to standard form. 2
(c) Find the upper and lower limits of the real roots of the equation:
$3 x^{4}-12 x^{2}+17 x-19=0$ by method of grouping.

