http://www.punjabpapers.com [Total No. of (i) Printed Pages 3 (ii) Questions 8]

Sub Code: 0147(1048) **Exam Code:** 0002

Exam: B.A./B.Sc.(General), 2nd Semester

Subject: Mathematics

Paper : Paper - III : Theory of Equations

Time: 3 Hours Maximum Marks: 30

Note: Attempt five questions in all selecting at least two questions from each unit. All questions carry equal marks.

UNIT-I

- 1. (a) Find a polynomial of least degree having
 -2, 1, 3 as its zeros and having value
 -8 at x = 2.
 - (b) Find g.c.d of two polynomials $f(x) = x^3 + 6x^2 + 11x + 6 \text{ and } g(x) = x^2 + 7x + 10.$ Express the g.c.d as a(x) f(x) + b(x) g(x).
- 2. (a) Solve the equation $x^4 + 2x^3 2x 1 = 0$ given that it has multiple roots.

- (b) Prove that the complex roots of a real polynomial equation occur in conjugate pairs.
- 3. (a) Solve the equation $x^4 + 2x^3 21x^2 22x + 40 = 0$ given that its roots are in A.P.
 - (b) Solve the equation x^4 $8x^3$ + $14x^2$ + 8x 15 = 0 given that two of its roots are equal in magnitude but opposite in sign.
- 4. (a) Transform the equation $2x^3 9x^2 + 13x 6 = 0$ into one in which second term is missing and hence solve the equation.
 - (b) If α , β , γ are roots of $2x^3 + x^2 + x + 1 = 0$ form an equation whose roots are

$$\frac{1}{\beta^2} + \frac{1}{\gamma^2} - \frac{1}{\alpha^2}$$
, $\frac{1}{\gamma^2} + \frac{1}{\alpha^2} - \frac{1}{\beta^2}$, $\frac{1}{\alpha^2} + \frac{1}{\beta^2} - \frac{1}{\gamma^2}$

UNIT-II

5. (a) Find the equation whose roots are squared differences of the roots of the equation $x^3 + 6x^2 + 9x + 4 = 0$. Hence show that given equation has a double roots.

- (b) Let $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ be a real polynomial of degree n and $a_0 = 0$. Let r and s be the number of variations in sign of f(x) and f(-x) respectively. Show that n-r-s is even.
- 6. (a) Show that the real roots of the equation x^4 $10x^3$ $13x^2$ + 60x + 65 = 0 lie between -4 and 12.
 - (b) Use Newton's method of divisor to find the integral roots of the equation : $3x^4 23x^3 + 35x^2 + 31x 30 = 0$
- 7. (a) Use Cardon's method to solve $x^3 + x^2 16x + 20 = 0$
 - (b) For the equation $x^3 6x^2 6x 14 = 0$, find $G^2 + 4H^3$ and hence discuss the nature of roots.
- 8. (a) Solve the biquadratic x^4 $6x^3$ + $3x^2$ + 22x 6 = 0 by Descarte's Method.
 - (b) Solve by Ferrori's Method, the equation $2x^4 + 6x^3 3x^2 + 2 = 0$