(i) Printed Pages :3]

Roll No.

(ii) Questions :7]

Sub. Code:

0 1 4 8

Exam. Code:

0 0 0 2

B.A./B.Sc.(General) 2nd Semester 1055 PHYSICS

Paper: C: Electricity and Magnetism-II

Time: 3 Hours] [Max. Marks: 45

- **Note :-** (i) Attempt five questions in all, selecting two questions from each of Units 1 and II.
 - (ii) Unit III is compulsory.
 - (iii) Use of non-programmable scientific calculator is allowed.

UNIT-I

- 1. (i) Derive the equation of continuity $\overrightarrow{\nabla} \cdot \overrightarrow{j} + \frac{\partial \rho}{\partial t} = 0$ where ρ and
 - J are charge and current densities respectively. What form It will take for steady currents .
 - (ii) Calculate the average time between collisions for an electron Of electron gas colliding with positive ion of Copper Wire Having 10^{29} electrons m³ . Given resistivity of copper Is 1.7×10^{-8} ohm m .

2. Derive an expression for the electric field of a point charge moving with constant velocity. How does it differ from the field due to stationary charge. Illustrate with diagrams.

9

6,3

- 3. (i) Explain Langevin Theory of Diamagnitism.
 - (ii) Find the percent increase in magnetic induction when the space with current carrying toroid is filled with magnitism.

Given that the susceptibility of Magnesium is 1.2×10^{-5} .

UNIT-II

- 4. (i) State and prove the reciprocity theorem of Mutual Induction.
 - (ii) What is Hall Effect? Show that the Hall coefficient $R_H=1/m$.

6,3

- 5. (i) Drive Gauss Law in Magnetism.
 - (ii) Explain the term Surface current density. Give its application
 - (iii) Show that the magnetic field at a point inside the toroid will inversely as its distance from the centre. 3,3,3
- 6. (i) Define vector potential and derive and expression for it.
 - (ii) Show that the energy stored per unit volume in the magnetic Field 'B' set up Solenoid is $B^2/2\mu_0$ 5,4

UNIT-III

- 7. Attempt any **six** parts:-
 - (i) In a certain material drift velocity is quadratic function of electric field. Will the material on ohmic or non-ohmic.?
 - (ii) Can a free electron show diamagnetic effect? Explain.
 - (iii) Is the electric field due to a moving charge conservative?
 - (iv) Show that the magnetic scalar potential satisfies Laplace's Equation.
 - (v) What is the value of $\overrightarrow{\nabla}$. \overrightarrow{B} and $\overrightarrow{\nabla}$ x \overrightarrow{B} for points inside the current loop?
 - (vi) Define displacement current. What is its cause?
 - (vii) The magnetic flux linked with a close loop changes with time as $\phi = At^2 + Bt$. What are the Units of A and B.

 $6x1\frac{1}{2}=9$