[Total No. of (i) Printed Pages 4 Sub Code : 0341(1048)
(ii) Questions 8]

Exam Code : 0004

Exam : B.A./B.Sc. (General) 4th Semester
Subject : Mathematics
Paper : Paper-I Advanced Calculus-II
Time : 3 Hours
Maximum Marks : 30
Note : Attempt five questions in all, selecting at least two questions from each unit. All questions carry equal marks.

UNIT-I

1. (a) Prove that the sequence $\left\{a_{n}\right\}$ where
$a_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\ldots+\frac{1}{2 n}$ is convergent. 3
(b) Prove that the sequence $\{\mathrm{a}\}$ defined by $a_{1}=\sqrt{2,} a_{n}=\sqrt{2 a_{n-1}}$ converges to 2 .
2. (a) State and prove squeez principle.
(b) If $0<s_{1}<s_{2}$ and $s_{n}=\frac{2 s_{n-1}+s_{n-2}}{s_{n-1}+s_{n-2}}$ show that $\left\{s_{n}\right\}$
converges to $\frac{3 s_{1} s_{2}}{2 s_{1}+s_{2}}$
3. (a) Show that $\lim _{n \rightarrow \infty} \frac{1}{n}\left(1+2^{1 / 2}+3^{1 / 3}+\ldots+n^{1 / n}\right)=1$ 3
(b) Show that the sequence $\left\{a_{n}\right\}$, where
$a_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$ does not
converge, by showing that it is not a Cauchy sequence.
4. (a) Show that $f(x)=\sin x$ is uniformly continous on $\left[0, \frac{\pi}{2}\right]$
(b) Show that the function f defined by:
$f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if is irrational }\end{cases}$ is discontinuous every where.

UNIT-II

5. (a) Discuss the convergence or divergence of
the series $\frac{1}{1 \cdot 2 \cdot 3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+$
(b) Use Cauchy's condensation test to show that
that $\sum \frac{1}{n p}, p>0$ converges if $p>1$ and
diverges if $\mathrm{p} \leq 1$.
6. (a) Discuss the convergence or divergence of the
the series $\quad \sum_{n=1}^{\infty} \frac{x^{n}}{3^{n} n^{2}}$
(b) Discuss the convergence of the series
$\frac{x}{x+1}+\frac{x^{2}}{x+2}+\frac{x^{3}}{x+3}+\ldots \ldots ., x>0$
7. (a) Examine the convergence or divergence of
the series $\frac{1^{2}}{2^{2}}+\frac{1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} x+\frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} x^{2}+\ldots . . ., x>0$.
(b) Show that the series $1-\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}-\frac{1}{4 \sqrt{4}}+$ is convergent.
8. (a) Show that the series $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$ is convergent for $-1<x \leq 1$.
(b) Find the sum of the series
$1+\frac{1}{3}+\frac{1}{5}+\frac{1}{2}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{4}+\ldots$.
