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Unit-I

B.A./B.Sc.(General) 6th Semester

Examination

1047

MATHEMATICS

Paper : I (Analysis-II)
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1.  (a)  Let A = {(x,y) : - 1 ≤ x ≤ 1, -1 ≤ y ≤ 1}
  And f : A → R be defined by :
    y if x is rational
    0 if x ix irrational

  Show that          f (x, y)dy   dx exists and the

  other repeated integral is not defined.
 

(                  )
f(x,y)= {
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 (b)  Change the order of integration and hence evaluate

  evaluate          (x + y) dx dy.

2.  (a)  Find the area of the region bounded between 
  the parabolas y  = 4 ax and x  = 4 ay, where
  a > 0.

 (b)  Evaluate            x y z(x  + y  + z  ) dx dy dz over

  x  + y  + z  = a  in positive octant.

3. (a)  Show that         (x + y + z)  dx dy dz over the

  regoin defined by x ≥ 0, y ≥  0, z ≥ 0,

  x + y + z = 1 is        .

 (b)  Show that F = (2 x y + z  ) i  + x  j + 3 x z  k is
  a conservative force field. Find the scalar potential. 
  Also find the work done in movingan object in 
  this field from (1, -2, 1) to (3, 1, 4).

4.  (a)  State and prove Gauss’s divergence theorem.
 (b)  Verify Stokes’ theorem for the vector point
  function  F = z i + x j + y k, where curve is the unit 
  circle in the XY plane bounding the
  semi-sphere z=   1 - x  - y  .
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5.  (a)  Show that sequence  {f  (x)} where
  f  (x)   =                 is uniformly convergent on

  [0, k], where k is any positive real number but is 
  not uniformly convergent on [0,∞].

 (b)  Show that the series              converges

  uniformly in (0, 2π).

6.  (a)  Test for uniform convergence and term by term 
  integration of the series:

 (b)  Show that the series                            is

  uniformly convergent fol all x and.it can be 
  differentiated term by term.

7.  (a)  Prove that the series 

  converges for -1 < x ≤ 1.
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 (b)  Prove that :

  Hence deduce that

8.  (a)  Find a series of sines and cosines of multiples of 
  x which represents x + x  in  (-π, π), Hence show 

  that 

 (b)  If f(x) = 

  then show that:

  Hence deduce that  
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