(ii) Questions :8]

Sub. Code :

0	5	4	2

Exam. Code:

0	0	0	6

B.A./B.Sc.(General) 6th Semester

Examination
1047
MATHEMATICS
Paper:I(Analysis-II)

Time : 3 Hours]

[Max. Marks: $\mathbf{3 0}$
Note :- Attempt five questions in all, selecting at least two from each Unit. All questions can equal marks.

Unit-I

1. (a) Let $A=\{(x, y):-1 \leq x \leq 1,-1 \leq y \leq 1\}$

And $f: A \rightarrow R$ be defined by :
$f(x, y)= \begin{cases}y & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { ix irrational }\end{cases}$
Show that $\int_{-1}^{1}\left(\int_{-1}^{1} f(x, y) d y\right) d x$ exists and the
other repeated integral is not defined.
(b) Change the order of integration and hence evaluate evaluate $\int_{0}^{a} \int_{x}^{\frac{a^{2}}{x}}(x+y) d x d y$.
2. (a) Find the area of the region bounded between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, where $a>0$.
(b) Evaluate $\iiint x y z\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ over $x^{2}+y^{2}+z^{2}=a$ in positive octant.
3. (a) Show that $\iiint(x+y+z)^{9} d x d y d z$ over the
regoin defined by $x \geq 0, y \geq 0, z \geq 0$, $x+y+z=1$ is $\frac{1}{24}$.
(b) Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is a conservative force field. Find the scalar potential.
Also find the work done in movingan object in this field from $(1,-2,1)$ to $(3,1,4)$.
4. (a) State and prove Gauss's divergence theorem.
(b) Verify Stokes' theorem for the vector point function $\vec{F}=z \hat{i}+x \hat{j}+y \hat{k}$, where curve is the unit circle in the $X Y$ plane bounding the semi-sphere $z=\sqrt{1-x^{2}-y^{2}}$.

Unit-II

5. (a) Show that sequence $\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right\}$ where $f_{n}(x)=\frac{n}{x+n}$ is uniformly convergent on
$[0, k]$, where k is any positive real number but is not uniformly convergent on $[0, \infty]$.
(b) Show that the series $\sum_{n=1}^{\infty} \frac{\cos n x}{n}$ converges uniformly in ($0,2 \pi$).
6. (a) Test for uniform convergence and term by term integration of the series:

$$
\sum_{n=1}^{\infty} \frac{x}{\left(n+x^{2}\right)^{2}}, 0 \leq x \leq 1
$$

(b) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n^{4} x^{2}}$ is
uniformly convergent fol all x and.it can be differentiated term by term.
7. (a) Prove that the series $x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$. converges for $-1<x \leq 1$.
(b) Prove that:

$$
\begin{aligned}
& \sin ^{-1} x=x+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \ldots .(2 n-1)}{2 \cdot 4 \cdot 6 \ldots . .2 n} \\
& \qquad \frac{x^{2 n+1}}{2 n+1} \forall x \in[-1, I] .
\end{aligned}
$$

Hence deduce that $\frac{\pi}{2}=1+\frac{1}{2} \cdot \frac{1}{3}+\frac{1.3}{2.4} \cdot \frac{1}{5}+\ldots .$.
8. (a) Find a series of sines and cosines of multiples of x which represents $x+x$ in $(-\pi, \pi)$, Hence show that $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\ldots .$.
(b) If $f(x)= \begin{cases}\frac{\pi}{3} ; & 0 \leq x \leq \frac{\pi}{3} \\ 0 ; & \frac{\pi}{3} \leq x \leq \frac{2 \pi}{3} \\ \frac{-\pi}{3} ; & \frac{2 \pi}{3} \leq x \leq \pi\end{cases}$
then show that:

$$
f(x)=\frac{2}{\sqrt{3}}\left[\cos x-\frac{\cos 5 x}{5}+\frac{\cos 7 x}{7}-\ldots\right]
$$

Hence deduce that $\frac{\pi}{2 \sqrt{3}}=1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\ldots$.

