(ii) Questions : 8

B.A./B.Sc. (General) 6th Semester 1048

MATHEMTICS

 Paper: II: Linear AlgebraTime : 3 Hours]
[Max. Marks: 30
Note :- Attempt FIVE questions in all, selecting at least TWO questions from each unit. All questions carry equal marks.

UNIT-I

I. (a) Prove that the necessary and sufficient condition for nonempty subset W of a vector space $\mathrm{V}(\mathrm{F})$ to be a subspace of V is that $\alpha x+\beta y \in W$ for $a, \beta \in F$ and $x, y \in W$.
(b) Let $V=\left\{\mathrm{A} \mid \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}^{\prime}}, \mathrm{a}_{\mathrm{ij}} \in \mathrm{R}\right\}$ bea vector space over reals. Show that W , the set consisting of all the symmetric matrices is a subspace of V .
II. (a) If W_{1} is a subspace of vector space $\mathrm{V}(\mathrm{F})$, then prove that \exists a subspace W_{2} of $V(F)$ such that $V=W_{1} \oplus W_{2}$.
(b) Show that linear transformation $T: R^{2} \rightarrow R^{3}$ defined by $T(x, y)=(x, x-y, x+y)$ is one-one but not onto.
III. (a) State and prove Extension Theorem.
(b) Show that dimension of the vector space $\mathrm{Q}(\sqrt{2}, \sqrt{3})$ over Q is 4 .
IV. (a) State and prove Rank - Nullity Theorem.
(b) Let T be a linear operator on R^{3} defined by

$$
T(x, y, z)=(2 x, 4 x-y, 2 x+3 y-z)
$$

Show that T is invertible and find T^{-1}.

UNIT-II

V. (a) Let T be a linear operator on R^{3} defined by:
$T(x, y, z)=(2 y+z, x-4 y, 3 x)$.
(i) Find the matrix of T relative to the basis
$B=\{(1,1,1) ;(1,1,0),(1,0,0)\}$
(ii) Also verify that $[\mathrm{T} ; \mathrm{B}][\mathrm{v}, \mathrm{B}]=[\mathrm{T}(\mathrm{v})$; B$]$ for any vector $v \in R^{3}$.
(b) Let A be a non-singular matrix over a field F and $\lambda \in F$ be an eigen value of A. Prove λ^{-1} is an eigen value of A^{-1}.
VI. (a) Find the linear mapping $T: R^{2} \rightarrow R^{3}$ determined by the matrix
$A=\left[\begin{array}{cc}0 & 2 \\ 1 & -1 \\ 2 & 3\end{array}\right]$ w.r.t., the ordered basis $B_{1}=\{(1,2),(0,3)\}$
and $B_{2}=\{(1,1,0),(0,1,1),(1,1,1)\}$ for R^{2} and R^{3} respectively.
(b) Consider the following basis of $R_{1}^{2} B_{1}=\{(1,0),(0,1)\}$ and $B_{2}=\{(1,2),(2,3)\}$. Find the transition matrices P and Q from B_{1} to B_{2} and B_{2} to B_{1} respectively. Verify $\mathrm{Q}=\mathrm{P}^{-1}$.
VII. (a) Let T: $R^{3} \rightarrow R^{3}$ be L.T. which is represented in the standard ordered basis by matrix $\left[\begin{array}{lll}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]$. Prove that T is diagonalizable.
(b) Find characteristic equation and characteristic roots of zero and identity matrices of order n.
VIII. (a) Prove that any two characteristic vectors corresponding to two distinct characteristic roots of a unitary matrix are orthogonal.
(b) Let a linear operator $T: R^{3} \rightarrow R^{3}$ be defined as

$$
T(x, y, z)=(x+y, y+z, z)
$$

Find Characteristic Polynomial and minimal polynomial of T.

