(i) Printed Pages: 3

Roll No.

(ii) Questions :8

Sub. Code: 0 5 4 2

Exam. Code:

0 0 0 6

B.A./B.Sc. (General) 6th Semester 1048 MATHEMTICS Paper: II: Linear Algebra

Time: 3 Hours] [Max. Marks: 30

Note: Attempt FIVE questions in all, selecting at least TWO questions from each unit. All questions carry equal marks.

UNIT-I

- I. (a) Prove that the necessary and sufficient condition for non-empty subset W of a vector space V(F) to be a subspace of V is that $\alpha x + \beta y \in W$ for $\alpha, \beta \in F$ and $x, y \in W$.
 - (b) Let $V = \{ A \mid A = [a_{ij}]_{n \times n}, a_{ij} \in R \}$ be a vector space over reals. Show that W, the set consisting of all the symmetric matrices is a subspace of V.
- II. (a) If W_1 is a subspace of vector space V(F), then prove that \exists a subspace W_2 of V(F) such that $V = W_1 \oplus W_2$.
 - (b) Show that linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x, x y, x + y) is one-one but not onto.

- III. (a) State and prove Extension Theorem.
 - (b) Show that dimension of the vector space Q ($\sqrt{2}$, $\sqrt{3}$) over Q is 4.

4,2

- IV. (a) State and prove Rank Nullity Theorem.
 - (b) Let T be a linear operator on R^3 defined by T(x, y, z) = (2x, 4x y, 2x + 3y z). Show that T is invertible and find T^{-1} .

4,2

UNIT-II

- V. (a) Let T be a linear operator on R^3 defined by : T(x, y, z) = (2y + z, x 4y, 3x).
 - (i) Find the matrix of T relative to the basis $B = \{(1, 1, 1); (1, 1, 0), (1, 0, 0)\}$
 - (ii) Also verify that [T; B] [v, B] = [T(v); B] for any vector $v \in R^3$.
 - (b) Let A be a non-singular matrix over a field F and $\lambda \in F$ be an eigen value of A. Prove λ^{-1} is an eigen value of A^{-1} .

4,2

VI. (a) Find the linear mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ determined by the matrix

A =
$$\begin{bmatrix} 0 & 2 \\ 1 & -1 \\ 2 & 3 \end{bmatrix}$$
 w.r.t., the ordered basis B₁ = {(1, 2), (0, 3)}

and $B_2 = \{(1, 1, 0), (0, 1, 1), (1, 1, 1)\}$ for R^2 and R^3 respectively.

- (b) Consider the following basis of R_1^2 $B_1 = \{(1, 0), (0, 1)\}$ and $B_2 = \{(1, 2), (2, 3)\}$. Find the transition matrices P and Q from B_1 to B_2 and B_2 to B_1 respectively. Verify $Q = P^{-1}$.
- 3,3

4,2

- VII. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be L. T. which is represented in the standard ordered basis by matrix $\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$. Prove that T is diagonalizable.
 - (b) Find characteristic equation and characteristic roots of zero and identity matrices of order n.
- VIII. (a) Prove that any two characteristic vectors corresponding to two distinct characteristic roots of a unitary matrix are orthogonal.
 - (b) Let a linear operator $T: R^3 \to R^3$ be defined as T(x, y, Z) = (x + y, y + z, z). Find Characteristic Polynomial and minimal polynomial of T. 3,3