Roll No.

Total Pages: 3

8656/MH

AS-2057 PARTIAL DIFFERENTIAL EQUATION - V

(Semester-II)

Time Allowed: 3 Hours] [Maximum Marks: 36

Note :- Attempt two questions each from Section A and B carrying 5.5 marks each, and the entire Section C consisting of 7 short answer type questions carrying 2 marks each.

SECTION-A

- I. (a) Construct a PDE by eliminating a, b and c from z = a(x + y) + b(x y) + abt + c.
 - (b) Form a PDE by eliminating arbitrary functions from $z = f(x^2 y) + g(x^2 + y)$.
- II. Find the complete integral of $x^2p^2 + y^2q^2 = z^2$.
- III. Solve the PDE: p tan x + q tan y = tan z.

IV. Apply Charpit's method to find complete integral of $z^2(p^2z^2+q^2)=1$.

SECTION-B

V. Solve the PDE:

$$\frac{\partial^2 z}{\partial x^2} - 4 \frac{\partial^2 z}{\partial y^2} = \frac{4x}{y^2} - \frac{y}{x^2}$$

VI. Solve:

$$\frac{1}{x^2} \quad \frac{\partial^2 z}{\partial x^2} \quad - \quad \frac{1}{x^3} \quad \frac{\partial z}{\partial x} \qquad \frac{1}{y^2} \quad \frac{\partial^2 z}{\partial x^2} \quad - \quad \frac{1}{y^3} \quad \frac{\partial z}{\partial y}$$

- VII. Solve the one-dimensional heat equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{m} \frac{\partial u}{\partial t}$ in $0 \le x \le \pi$, t > 0 given u remains finite as $t \to \infty$.
- VIII. Find the general solution of one-dimensional wave

equation
$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$
 and find particular solution

for which
$$u = f(x)$$
, $\frac{\partial u}{\partial t} = g(x)$ at $t = 0$.

SECTION-C

IX. Attempt all the following:

(a) Solve:
$$z = px + qy + c\sqrt{1 + p^2 + q^2}$$
.

- (b) Solve the PDE: $xp yq = \frac{y^2 x^2}{z}$
- (c) Solve the PDE: yzp + zxq = xy.
- (d) Solve the DPE: $(D^3 - 4D^2D' + 4DD'^2)z = 4 \sin(2x + y).$
- (e) Find the surface satisfying $(D^2 2DD' + D'^2)z = 0$ and conditions that $bz = y^2$ when x = 0 and $az = x^2$ when y = 0.
- (f) Explain the D' Alembert's procedure of finding the solution of $\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2}$.
- (g) Solve $z = px + qy + p^2 + q^2$ using Charpit's method.