Roll No.

Total Pages: 6

8675/MH

[Maximum Marks: 36

AS-2057

ANALYSIS-II

Paper-V

(Semester-IV)

Time Allowed: 3 Hours]

Note: The candidates are required to attempt two questions each from Sections A and B carrying 5.5 marks each and the entire Section C consisting of 8 short answer type questions carrying 14 marks.

SECTION-A

1. (a) Show that $\lim_{n\to\infty} a_n = 0$, where $\{a_n\}$ is a sequence

with
$$\lim_{n\to\infty} \frac{a_n + 1}{a_n} = 1, |I| < 1.$$

(b) Show that:

$$\left[\begin{array}{ccc} 1 \\ \hline \sqrt{n^2 + 1} \end{array} \right. + \left. \frac{1}{\sqrt{n^2 + 2}} \right. + + \left. \frac{1}{\sqrt{n^2 + 1}} \right. \right] = 1.$$

2.5

2. (a) Show that for any real number

$$x, \lim_{n\to\infty} \frac{x^n}{n!} = 0.$$

3

(b) Test the convergence of the series

$$\sum \frac{(n^3 + 1)^{1/3} - n}{\log n}$$

2.5

3. (a) Show that the series

$$\frac{1}{(\log 2)^{P}} + \frac{1}{(\log 3)^{P}} + ... + \frac{1}{(\log n)^{P}} + ...$$

diverges for p > 0.

3

(b) Test the convergence of

$$\sum_{n=1}^{\infty} C^{-n^2}.$$

2.5

4. (a) Establish the divergence of the series

$$2 - \frac{3}{2} + \frac{4}{3} - \frac{5}{3} + \dots$$

2.5

(b) Show that the series $\sum \frac{(-1)^{n+1}}{n^p}$ converges conditionally for 0 and converges absolutely for <math>p > 1.

3

SECTION-B

- 5. Prove that the series $\sum_{n=0}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$ converges
 - uniformly in every bounded interval but does not converge absolutely for any real value of x.

5.5

6. Prove that the series $\sum \frac{\sin n\theta}{n^p}$ converges uniformly for all p > 0 in $[\alpha, 2\pi - \alpha]$ where $0 < \alpha < \pi$.

5.5

7. Show that the series:

$$\frac{x}{1+x} + \frac{x}{(1+x)(1+2x)} + \frac{x}{(1+2x)(1+3x)} +$$

is uniformly convergent on [a, b], a > 0 but only pointwise in [0, b].

5.5

8. Prove that if a power series $\sum a_n x^n$ diverge for some $x = x_0$, then it diverges for every x, for which

 $|x| > |x_0|$.

SECTION-C

9. (a) State Abel's theorems on power series.

1

(b) Determine the radius of convergence and the exact interval of convergence of the series.

 $\sum_{n=1}^{\infty} \frac{x^n}{n!}$

2

(c) What is the difference between the concept of pointwise and uniform convergence of a sequence of function. Also give example of each type of sequence.

2

(d) Give an. example of a function to show that limit of differentials is not equal to the differential of the limit.

2

(e) Show that for any fixed value of x the series

 $\sum \frac{\sin nx}{n^2}$ is convergent.

2

(f) Differentiate between the terms absolute and conditional convergence.

2

(g) Test the convergence of the series $\sum \frac{1}{n^{1+1/n}}$

2

(h) State Abel's and Dirichlet's tests.

1