8675/MH

AS-2057

ANALYSIS-II

Paper-V

(Semester-IV)

Note :- The candidates are required to attempt two questions each from Sections A and B carrying 5.5 marks each and the entire Section C consisting of 8 short answer type questions carrying 14 marks.

SECTION-A

1. (a) Show that $\operatorname{lt}_{n \rightarrow \infty} a_{n}=0$, where $\left\{a_{n}\right\}$ is a sequence
with $\operatorname{lt}_{n \rightarrow \infty} \frac{a_{n}+1}{a_{n}}=1, \| \mid<1$.
(b) Show that:

$$
\operatorname{lt}_{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\ldots .+\frac{1}{\sqrt{n^{2}+1}}\right]=1 .
$$

2. (a) Show that for any real number

$$
\begin{equation*}
x, \operatorname{lt}_{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \tag{3}
\end{equation*}
$$

(b) Test the convergence of the series

$$
\sum \frac{\left(n^{3}+1\right)^{1 / 3}-n}{\log n}
$$

3. (a) Show that the series

$$
\begin{equation*}
\frac{1}{(\log 2)^{p}}+\frac{1}{(\log 3)^{p}}+\ldots \frac{1}{(\log n)^{p}}+\ldots \ldots \tag{3}
\end{equation*}
$$

diverges for $p>0$.
(b) Test the convergence of

$$
\sum_{n=1}^{\infty} C^{-n^{2}}
$$

4. (a) Establish the divergence of the series

$$
2-\frac{3}{2}+\frac{4}{3}-\frac{5}{3}+\ldots \ldots
$$

(b) Show that the series $\sum \frac{(-1)^{n+1}}{n^{P}}$ converges conditionally for $0<\mathrm{p} \leq 1$ and converges absolutely for $p>1$.

SECTION-B

5. Prove that the series $\sum(-1)^{n} \frac{x^{2}+n}{n^{2}}$ converges uniformly in every bounded interval but does not converge absolutely for any real value of x.
6. Prove that the series $\sum \frac{\sin n \theta}{n^{p}}$ converges uniformly for all $p>0$ in $[a, 2 \pi-\alpha]$ where $0<\alpha<\pi$.
7. Show that the series:

$$
\frac{x}{1+x}+\frac{x}{(1+x)(1+2 x)}+\frac{x}{(1+2 x)(1+3 x)}+\ldots
$$

is uniformly convergent on [a, b], a > 0 but only pointwise in [0, b].
8. Prove that if a power series $\sum a_{n} x^{n}$ diverge for some $x=x_{0}$, then it diverges for every x, for which

SECTION-C

9. (a) State Abel's theorems on power series.
(b) Determine the radius of convergence and the exact interval of convergence of the series.
$\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$
(c) What is the difference between the concept of pointwise and uniform convergence of a sequence of function. Also give example of each type of sequence.
(d) Give an. example of a function to show that limit of differentials is not equal to the differential of the limit.
(e) Show that for any fixed value of x the series $\sum \frac{\sin n x}{n^{2}}$ is convergent.
(f) Differentiate between the terms absolute and conditional convergence.
(g) Test the convergence of the series $\sum \frac{1}{\mathrm{n}^{1+1 / n}}$
(h) State Abel's and Dirichlet's tests.
